
 1

How Should We Tailor Software Development Practices for
the Scientific Domain?

Archer L. Batcheller
University of Michigan

archerb@umich.edu

ABSTRACT
This position paper is about the process of creating software
that enables new scientific practices. I take the position that
creating software for scientists is different from creating
software in other contexts, and that it is important to
understand the modes and particularities of software
engineering for scientists. I focus on the implications for
requirements analysis, where various stakeholders in the
project seek to negotiate and communicate their desires. I
believe that our methodology for designing software and
engaging stakeholders needs to vary with the specific
project.

Author Keywords
Cyberinfrastructure, infrastructure, software engineering,
participatory design.

ACM Classification Keywords
K.4.3 [Organizational Impacts]: Computer-supported
collaborative work; D.2 [Software Engineering]; J.2
[Physical Sciences and Engineering]: Earth and
atmospheric sciences

INTRODUCTION
Software to support science work is produced in different
ways and for different purposes. Sometimes it’s a top-down
product of visionaries in the field. Other times it comes
about as a result of someone producing a local solution that
ends up being a big hit. The software can support
monitoring and generating data, or support modeling
efforts, or facilitate storage and access to scientific memory
– either data or publications. Or software can facilitate
connections and collaborations between scientists. To
support these diverse purposes and origins, a number of
different software development methodologies are
employed. Here we investigate some of the ways that
software is being written for climate science and citizen

science work. Individuals working on this strategically
choose diverse design methodologies – varying both among
the various efforts and differing from software development
in non-science domains. Better understanding the choices
and implications of design methodologies is an important
part of producing successful technologies.

Domain scientists writing code
One mode for developing software to support scientific
work is when scientists within a domain take on their own
software development. This may entail translating a
mathematical model into computer code, cleaning and
manipulating data, writing software for archiving
observations, or a variety of other large and small projects.
Such software endeavors may be side projects or attended
to only as necessary, since rewards for scientists revolve
around research production and publications in particular.

Computer scientists writing code
At other times, computer scientists may partner with
researchers within a specific domain to help develop
software. This typically involves incorporating computer
scientists’ research goals into the project to address some
particularly technically challenging problem. Yet as both
Weedman and Lawrence have each pointed out, this often
leads to tension within the project as computer scientists
receive little reward for fine-tuning and debugging software
to make it the production quality that the domain scientists
need [7, 11].

Software engineers writing code
Recent attention to developing cyberinfrastructure to
support scientific work has resulted in more direct and
focused work on building software. In practice, this often
means assigning or hiring software developers to be
responsible for writing the necessary code. These workers
may have more professional training in managing software
projects and are paid to do the tough bug-hunting work
necessary when trying to produce production quality
systems. This separation of roles, such that scientists are not
responsible for (as much) software development work
represents a deliberate strategy to split both the technical
architecture and the work. Non-scientists can be responsible
for the underlying architecture, which scientists may then
build upon as they assemble tools and do tasks. Scientists
may still write some lesser amount of code, which is then
supported by the underlying infrastructure (or middleware).

 2

As Conway has long pointed out, the communication
structure of a team is reflected in the design of the
architecture [3]. By splitting the architecture of scientific
software, we hope that scientists don’t have to
communicate with or be part of a large chunk of the
software development efforts.

However, as Segal has highlighted, software engineers do
still need to coordinate with scientists about the
infrastructural tools being developed and the interaction
between their two different “cultures” can present a
challenge [10]. Cultural differences are only compounded
by affects of distributed teams and inadequate
methodological tools for cyberinfrastructure projects [12].

DEVELOPING FOR SCIENTISTS
Software development for scientific cyberinfrastructure will
face many of the challenges typical for both scientific
collaboration [8] and for software development [9]. But it
also face issues specific to the intersection of software
development for science. A recent series of International
Conference on Software Engineering workshops on
software engineering for high-performance computing and
computational science and engineering have highlighted
these special challenges [1-2]. For instance, while
requirements for all software projects shift, requirements
changes are an inherent part of discovery as science
explores different possibilities. Other ways that software
development in science is unique include:

 A focus on optimization, potentially impacting
whether a program is usable

 “Kleenex code” where one correct run is enough

 Software that needs to implement complex
mathematical models, and use complex hardware

 Quality assurance is both important and especially
challenging when correct outcomes may not be
known beforehand

 Scientific funding depends on short-term grants

SOFTWARE FOR CLIMATE SCIENTISTS
The following projects that I am studying describe
themselves as developing infrastructure for scientists to use.
Their immediate goals are focused around engineering
outcomes, not scientific discoveries. In positioning
themselves as teams to develop infrastructure, they have
deliberately separated a set of concerns away from
scientists for which they will take ownership. This is
intended to shift software development burden away from
scientists to professional software developers. So scientists
end up being more users than end-user developers like we
see in other areas of software innovation in science. This
makes it more straightforward to compare dynamics of
software development in these teams to teams in industry,
where there is also often a user-developer dichotomy.

My research inquiry focuses around the software
requirements engineering of the following groups, detailing
the interaction between scientists and developers. I am
particularly interested in the methodological approaches
that the project leaders and developers use, and how those
compare to ones typically used in industry.

Earth System Modeling Framework
The Earth System Modeling Framework (ESMF) group is
producing a single, open source software product managed
in one CVS source code repository. An advisory board and
executive committee establish project priorities, and a
change review board meets quarterly to determine the exact
customer bug and feature requests that should be addressed
and when. It is led by a project manager, who oversees
approximately ten full-time developers. Developers are
scattered geographically, and may be based at other
institutions or from their homes as contractors.

The ESMF organizers’ goal is an ambitious one, to "unite
climate, weather and data assimilation groups under a
common framework" and to "fundamentally change the
culture of Earth system modeling” [4]. ESMF aspires to be
a project, a product, and a standard used by the community
[6]. The ESMF is an example of an effort to deliberately
allocate some software development to a group of software
engineers, with the hope that it can be reused and serve as a
building block for modeling groups that write components
that are to be linked together under the framework.

The ESMF keeps track of its users using customer
management software, and provides support and feature
request services for the scientist users. The team is
conscious of a need to satisfy modeling groups to lead to
further adoption and momentum for the project.

Earth System Grid
The Earth System Grid (ESG) group is led by several
principal investigators who make up a small executive
board. There are a set of tools that facilitate the sharing of
datasets, coordinated via a web portal. These portals can be
used to access data, and the various tools simplify the
process of discovering content, authorizing access, and
downloading data. ESG developers are also scattered
geographically, but tend to have clustered teams at different
institutions who are all working on the same or related
tools.

ESG’s efforts at adoption were bolstered by the designation
of one of its sites (Lawrence Livermore National
Laboratory’s Program for Climate Model Diagnosis and
Intercomparison) as a host of climate model data for the
Intergovernmental Panel on Climate Change (IPCC)’s 4th
Assessment Report. With this mark of, ESG established a
foothold as a major data distribution system, serving more
than 130 TB to about 4,000 different users [5].

The ESG team has been deliberate about trying to get
usability feedback from scientists, at times recognizing that

 3

they need to pay scientists as part of the project to ensure
they will be adequately involved to give quality feedback.
As the project has grown, they have also recognized that
they need to mature in robustness too, and have hired
developers with industry experience to enhance their
product as one that is of production quality.

Earth System Curator
The Earth System Curator (ESC) project is an effort to
advance work on metadata for climate model datasets.
There is no single code repository resulting from this
project. Developers are also scattered geographically, and
different institutions may or may not ultimately contribute
their code back to a single resource. For instance, one
institution may use its ESC funds to further development of
metadata tools for itself. The most concrete products will
feed back into the ESG and ESMF code repositories,
improving their capacities with respect to metadata.

The ESC has faced some of the typical challenges of
involving computer scientists, where computer scientists do
good development work but are motivated by their own set
of research questions. Answering those research questions
is usually possible by building prototypes, not concrete
products. This project may end up pushing the frontier of
technological possibilities, which can then be selectively
implemented by more permanent projects.

PARTICIPATORY DESIGN AND CITIZEN SCIENCE
I have also been involved in the development of a web
portal for lay people to access lake data. The Lake Sunapee
Protective Association maintains a buoy which reports real-
time data about air and water temperatures, water oxygen
levels, wind speed, and solar radiation. The web portal is
intended to provide a resource for those interested in the
lake, and to help them to think about the science related to
the lake. This sort of engagement of lay persons is often
termed “citizen science.”

To design for this special case of citizen scientists, our team
used a participatory design methodology. Lake association
members worked with the design team in a series of 3-4
day-long workshops – quite a few for a relatively small
project. Philosophically, broadening participation in science
is well aligned with the goal of opening participation in the
design process. As we prepare to launch the web portal, we
suspect that this design approach has helped to gather buy-
in to the product, which they helped create, and has helped
give the organization both a time and structure to start
thinking about how they can integrate the web portal into
their existing activities.

It is important to have a range of different design
methodologies available, and I believe that participatory
design has been a particularly good fit for this project. I
suspect that it would entail too much commitment for
professional scientists, who may not be willing to devote
the time necessary to be engaged in the design work
regularly.

DISCUSSION POINTS
Of course I am interested in feedback about my work, but
there are a few items that I am particularly interested in
discussing at the workshop on “The Changing Dynamics of
Scientific Collaborations.” These are primarily focused
around the methodology of designing systems for scientists.

1. Which roles and types of people are involved in
innovation around scientific collaboration? How
do scientists relate to developers and negotiate
product specifications?

2. How is the context of software development for
science similar and different from industry and
open source?

3. What design methodologies are appropriate for
scientific cyberinfrastructure? How should
methodologies vary for the targeted project?

REFERENCES
1. Carver, J.C. Third international workshop on Software

Engineering for High Performance Computing
Applications. In Proc. of the 29th International Conf. on
Software Engineering, Minneapolis, 2007.

2. Carver, J.C. The second international workshop on
Software Engineering for Computational Science and
Engineering. In Proc. of the 31st International Conf. on
Software Engineering, Vancouver, 2009.

3. Conway, M.E. How Do Committees Invent?
Datamation, 14, 5 (1968), 28-31.

4. da Silva, A. and et al. Future Directions for the Earth
System Modeling Framework. 2004.

5. ESG. ESG II Final Report: Turning Climate Datasets
into Community Resources. U.S. Department of Energy
Office of Science, 2006.

6. ESMF. ESMF Draft Project Plan 2005-2010. 2005.
7. Lawrence, K.A. Walking the Tightrope: The Balancing

Acts of a Large e-Research Project. Computer
Supported Cooperative Work, 15, 4 (2006), 385-411.

8. Olson, J.S., Hofer, E.C., Bos, N., Zimmerman, A.,
Olson, G.M., Cooney, D. and Faniel, I. A Theory of
Remote Scientific Collaboration. Scientific
Collaboration on the Internet, G. M. Olson, A.
Zimmerman and N. Bos. MIT Press, Cambridge, 2008.

9. Sangwan, R., Mullick, N., Bass, M., Paulish, D. and
Kazmeier, J. Global software development handbook.
CRC Press, 2006.

10. Segal, J. When Software Engineers Met Research
Scientists: A Case Study. Empirical Software
Engineering, 10, 4 (2005), 517-536.

11. Weedman, J. The Structure of Incentive: Design and
Client Roles in Application-Oriented Research. Science
Technology & Human Values, 23, 3 (1998), 315-345.

12. Zimmerman, A. and Nardi, B.A. Whither or whether
HCI: requirements analysis for multi-sited, multi-user
cyberinfrastructures. In Proc. of the CHI '06 extended
abstracts on Human factors in computing systems. ACM
Press, Montreal, 2006.

