
Socio-technical logics of correctness in the
scientific software development ecosystem

Position Paper for Workshop on The Changing Dynamics of Scientific Collaboration at CSCW 2010

James Howison
School of Computer Science
Carnegie Mellon University

jhowison@cs.cmu.edu

James D Herbsleb
School of Computer Science
Carnegie Mellon University

jdh@cs.cmu.edu

INTRODUCTION

Science increasingly depends on software. From config-
uration and control of instruments, to statistical analysis,
simulation and visualization, virtually every workflow that
generates scientific results involves software.1 In practice,
scientific collaboration in a growing number of disciplines
means drawing together different software artifacts produced
in different ways, by different people, to build an ensemble
artifact that does scientific work and, ultimately, provides
reasons to believe scientific conclusions.

In this position paper we present an understanding of the sci-
entific software development ecosystem that is emerging from
our interviews of working scientists who develop software in
the course of their science. First we describe the types of
software and software development being undertaken. We then
focus in on three logics of correctness that have emerged from
our interviews. We demonstrate that these logics are closely
linked to the social circumstances of the software’s production
and use and the type of software; these are socio-technical
logics. We conclude by examining the implications of this
understanding for shaping policies designed to maximize the
return on the substantial public investments in scientific soft-
ware production.

The interviews

We have just begun a three year NSF-funded project de-
signed to improve our understanding of the scientific software
ecosystem.2 As a foundation for this study we have inter-
viewed 16 scientists from 5 different scientific collaborations
associated with the Open Science Grid. Three collaborations
are working in physics (one particle accelerator and two
specialized observatories), one works in structural biology
and the fifth assists scientists from a variety of domains in
accessing Grid computational resources. 14 of the informants
describe themselves as scientists, while 2 identify as pro-
fessional software developers. Their roles include software

1This is true both of the software that facilitates collaboration (i.e. com-
munication systems) and of the software that is the subject and outcome of
scientific collaboration, which is our focus in this paper.

2http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0943168

coordinators for collaborations, infrastructure developers, sci-
entific software consultants and scientists undertaking front-
line analysis aimed at publishable results. The interviews are
semi-structured with a broad focus on software production and
sharing.

Types of scientific software

Collaboration Wide
Infrastructure

Basic computing infrastructure
(e.g. Operating systems)

Specific Analyses
Broadly used 
component

Working
Group Infrastructure

Grid middleware

Fig. 1. A sketch of the scientific software ecosystem.

Figure 1 depicts five different types of software that we find
in our interviews. Working from the top to the bottom, we
begin at the end, with analyses designed to support particular
scientific publications. Beneath these two kinds of infrastruc-
ture: collaboration wide and working group infrastructure,
differentiated by the number of analyses which rely on them.
Underlying all of this we find the broadest kind of shared
computing infrastructure: operating systems, such as Linux,
Windows and Mac OS X. Literally scattered throughout these
different layers we find two additional kinds of software: Grid
related middleware and components from outside a specific
collaboration, usually open-sourced. Some are more specific to
particular fields (such as ROOT in high-energy physics or the



R statistics package), while others are potentially more general
(such as high-throughput input/output frameworks). These
different types of software are orchestrated into particular
ensembles to do scientific work.

The software of the collaborations we have investigated
are architecturally organized around a filtering task. That is
their analysis chains begin with massive amounts of data and
they apply sequential theoretically informed filters, including
the results of simulations, to extract evidence of events of
scientific interest. Thus there is a temporal ordering to a
particular analysis, and steps which prove broadly useful
shift into lower layers of the architecture (from analyses to
working group infrastructure to collaboration infrastructure). A
key component of collaboration infrastructure is therefore the
software that directs and manages the step-by-step application
of filters and the recording of data and the results of each step.
Components such as Grid computing middleware or broadly
used components are applied where ever they are needed,
ending up throughout the full analysis chain.

Software is mentioned in scientific publications in two ways.
The first is citations out to “well-known” scientific analysis
packages, falling into our “broadly used component” category.
The second, less common, is by reference to a customized
analysis workflow corresponding to the specific ensemble that
backs the science discussed in the paper. This second kind
of reference is often by reference to an internal source code
repository label (such as a cvs/svn/git “tag”), although it is
clear that while such provenance information is an aim of the
scientists it does not always occur.

Each of these components are developed in quite differ-
ent ways, by different numbers of people in collaboration.
Analyses are often the work of a single grad student or
post-doc as they work towards specific publication goals. In
the words of one informant they are focused on “producing
plots” (where plots are the primary format taken as evidence
for scientifically interesting events). By contrast collaboration
wide infrastructure is typically planned from the start of the
collaboration, has many contributors (roughly speaking a core
of 5̃ whose primary focus is software development and perhaps
up to 50 irregular contributors, depending on the size of the
collaboration).

Those that identify as professional software developers are
relatively rare. Many of the scientists we interviewed indicated
that they had difficulty working with non-scientist software
developers; indeed the two interviewees that identified as
professional software developers had domain specific back-
grounds (a Physics PhD in one case and a Physics undergrad
from a top institution in the other) and were described by
others as physicists.

Grid infrastructure is distinguished because it is built out-
side scientific collaborations, usually with core contributors
funded on infrastructural grant money targeted in large part to
software development.

The broadly used components vary substantially in the
organization of their production. We found use of commercial
components only in one collaboration, structural biology and

no use at all in the physics collaborations we studied. Pre-
liminary inspection of the open source projects reveals that
they vary hugely in size, from R with 100s of contributors, to
input/output libraries with less than 5 contributors, to widely
used components irregularly supported by their original, sin-
gle, authors.

A final distinction between components is how often they
are expected to be used: analyses can be useful even if
they are only used once, infrastructure is justified by the
frequency of its use inside the collaboration, and “broadly
used” components are distinguished by their use in multiple,
different scientific (or more general) contexts.

THREE LOGICS OF SOFTWARE CORRECTNESS

The theme of software correctness and its entanglement with
the organization of software production and assemblage is one
theme that has emerged from these interviews. Correctness
is a core value of science. As computation and therefore
software plays an increasingly central role in science the
scientific enterprise comes to rely more heavily on the logic of
software correctness. Yet, one scientist we interviewed argued
that techniques to demonstrate correctness in computational
science are different to those used prior to the computational
shift, such as formal proofs in equation systems, but such skills
are not yet considered a core part of scientific education.

In our interviews we asked how the informant knew that
their software was performing correctly in the course of their
science. Three broad classes of answers emerged, here they
are paraphrased for brevity:

1) This software is used all the time by everyone; it
has been validated and checked by others; there are
processes in place to check its correctness. (Exter-
nal/Exposure)

2) I wrote it all myself; and have had it reviewed by close
peers; those that understand it best have checked it.
(Personal/Local)

3) Mutually supportive results are produced by multiple
separate implementations of this software, or alternative
theoretically informed methods. (Results Validation)

The first logic shifts the burden of correctness to an external
socio-technical arrangement. It draws on two related sources:
authority (the author/s are really good at their work) and
exposure (“many eyes” have checked this code because it
is used all the time). The sum of this is the expectation
that the code will perform in a wide variety of cases and
usage environments. An example of this is the ROOT analysis
software project in high-energy physics, or even the file-system
operations of the Linux kernel. This logic lines up cleanly
with the classic argument for the correctness of open source
software and can be seen clearly in papers where citations are
made to existing packages.

The second logic is almost the exact inverse of the first:
code is to be trusted because it has been written from scratch
for this exact purpose, there is no un-inspected external code
in which errors could be hiding. In the high-energy physics
collaborations we spoke to it is taken as standard practice



to have close colleagues review code used for results in
publications, usually by colleagues within the same analysis
sub-group. These reviewers are considered close enough to the
science to understand the system in detail and thereby judge
its adequacy. This logic is rarely, if ever, referenced in a paper,
where discussion of custom software built for the analysis is
limited to, at most, a source control tag, but discussion of the
circumstances of its production is excluded.

The third logic argues that the correctness of the software is
demonstrated because the results it produces are supported in
multiple independent ways, including the results of other un-
related software implementations (other labs or collaboration
sub-groups or even other students) and theoretic expectations
elaborated in other ways (for example through systems of
mathematical equations or laborious manual inspection or
manipulation). The specific piece of software is embedded in
a matrix of theory-laden artifacts which together are respon-
sible for scientific correctness. This logic is strong in actual
publications.

In practice, of course, these multiple logics are combined:
(again to paraphrase) “I deeply understand and checked the
parts I wrote, many others checked the parts I didn’t write and
the entire ensemble produces results mutually supported by
previous work and theory”. In particular the second and third
logics are often combined when considering the correctness
of code written for specific analyses.

Each logic has assumptions: Each logic, however, has key
assumptions. The first relies heavily on there actually having
been multiple uses and users of a piece of software. In scien-
tific work this is hard to take for granted, since requirements
can be so specialized. In fact this is a key difference between
scientific software and other types of software: much of it
is written with the intention that it will only be run a very
small number of times, perhaps just once to get the intended
scientific result. Certainly the fact that the software is open
source is no guarantee by itself at all that the software is
widely used. While some open science software is heavily
used and designed to perform in a wide set of circumstances,
other software labeled open source may only have been used
once or twice in very specific ways.

The second logic places significant onus on the skills of the
analysis author and the surrounding reviewers. Our informants
have been unanimous in their experience that actual code-
reading reviews are never done while a paper is being reviewed
by a journal, for example. Rather reviews happen very locally,
often just one level above the original author within a col-
laboration, even when the rest of the paper undergoes further
rounds of internal and external review. This practice maintains
the deep comprehension of the issue, but raises concerns about
shared blind-spots, training or groupthink.

The third logic relies on separate implementations not
making similar errors. More importantly it relies on previous
work or alternative representations being close enough in aim,
and results being in a comparable format, so that agreement
can be assessed at a fine enough level of granularity.

CONCLUSION

In an effort to maximize the returns on public investment
in science a series of policies have been adopted by scientific
funding agencies and journals, each driving towards increased
openness. Well known examples include the NIH’s policy re-
quiring the deposition of publications in open-access reposito-
ries, such as PubMed, and data in databases such as the NCBI’s
Gene Expression Omnibus (GEO). Agencies are considering
similar policies with regard to software production, including
requirements that all publicly funded code be “open-sourced”
with the expectation that this will reduce redundancy, promote
scientific openness and thus simultaneously advance science
while saving money.

The position in this paper suggests that there is a risk that
broad, sweeping policies for software production in science
will result in over-emphasizing specific logics, even when its
assumptions are not met.

For example, one concern with a blanket policy of open
sourcing is that code that is, in fact, not widely used and
therefore wouldn’t otherwise have become an open source
project will be labeled as such. In that way code which had
been judged based on a combination of the second and third
logics, would then be at risk of being judged based on the
first logic. Programmers might be less likely to deeply inspect
such open source code and scarce review resources would be
less likely to concentrate on such code.

Secondly, it is worth considering that each logic relies on
a set of supporting institutional arrangements. For example,
a logic of exposure relies on there being enough shared
interest to draw together a large enough body of developers
and users to run a functional open source project, as well
as the collaboration and “gentle persuasion” skills required
in such projects. Conversely, the second logic relies on there
being adequate programming skills and time available to write
important software from scratch. Such skills and resources are
not likely to be substitutable.

Our interviews confirm that much analysis software is writ-
ten by early-stage PhD students in scientific disciplines, who
struggle to learn programming skills, often from scratch. While
this situation is far from perfect it seems to match more closely
with the requirements of the second logic, than to expect
these students to become contributors to well-organized open
source projects, exposing their early programming efforts to
intense scrutiny while learning. Somewhat counter-intuitively,
at least to us, we therefore suggest that little used code
designed for specific analyses should be archived and re-
written when required, rather than ‘dumped’ as open-source
scientific software, retaining an appropriate emphasis on the
logics of close understanding and multiple re-implementation.

The scientific software production ecosystem is complex;
we are only beginning to build a nuanced view and plan to
bolster our understandings by explicit analyses of individual
scientific workflows, mapping out all the software used and
tracing its origins.


