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Abstract— In this paper a clustering algorithm that learns
the groups of synchronized spike trains directly from data is
proposed. Clustering of spike trains based on the presence of
synchronous neural activity is of high relevance in neurophys-
iological studies. In this context such activity is thoughtto be
associated with functional structures in the brain. In addition,
clustering has the potential to analyze large volumes of data.
The algorithm couples a distance between two spike trains
recently proposed in the literature with spectral clustering. Fi-
nally, the algorithm is illustrated in sets of computer generated
spike trains and analyzed for the dependence on its parameters
and accuracy with respect to features of interest.

I. I NTRODUCTION

Current neuroscience research aims at understand how
groups of neurons collectively represent information, in
opposition to the single neuron studies done is the past [1].
Recent advances in recording devices now allow for multiple-
electrode recordings that simultaneous collect the activity of
many neurons (more that 20) [2]. In fact, current paradigms
may require the simultaneous recording of more than 100
neurons [2]. Analysis of neural activity is not only fundamen-
tal for neurophysiological studies, but also for applications
of this knowledge, such as Brain Machine Interfaces (BMIs)
which directly try to map neural activity into behavior [3]–
[5].

Yet, the enormous volumes of data collected in neural
recordings make the analysis of this data a daunting task.
In addition, because the spike train is defined only it terms
of the event times (the firing or spike times) it is in fact
a point process. Thus, standard statistical signal and data
analysis tools, such as clustering, are of limited use [1].
This is because these methods were designed to operate on
continuous random processes.

Clustering is an unsupervised learning method developed
in machine learning and pattern recognition that learns
groups of related data points directly from data [6], [7].
In the analysis of spike trains, clustering is of particular
interest since the clusters represent groups of neurons yield-
ing “similar” spike trains. Therefore, neurons responsible
for spike trains within a cluster are likely to be connected,
directly through synaptic connections or indirectly through
other neurons. (In neuroscience these functional groups of
neurons are calledneural assembliesand are thought to be
fundamental cognitive blocks in the brain [8].) In addition,
compared to other statistical tools for the analysis of neural
activity [1], clustering is a tool designed for the analysisof
large volumes of data and accounting for information from all
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input spike trains. Note that in establishing these connections
similarity is defined directly in terms of synchrony in the
spike times [8], [9].

To the best of our knowledge, clustering of spike trains un-
til now has relied mainly on binning1 the neural activity [10],
[11]. Although this approach is highly attractive since the
stochasticity in time of the point process is transformed
to randomness in the amplitude of a continuous random
process and, therefore, conventional clustering methods can
be employed. However, this approach quantizes time in a
very coarse manner which largely disregards any interactions
between single spikes. In fact, this approach is only valid if
the similarity between spike trains is defined in terms of their
firing rate patterns. If instead we define similarity in termsof
spike synchrony then the approach of Victor and Purpura [12]
can be used. In fact, their method is applicable with any
measure of synchrony, but the caveat in this approach is that
it assumes a priori knowledge of some reference spike trains
which function as cluster prototype data points. Naturally,
this is an unrealistic requirement is the general case.

In this paper we propose a clustering method that, in true
spirit of clustering, learns the groups of spike trains entirely
from the data and in an unsupervised manner. We will start
by defining a distance between two spike trains as proposed
by van Rossum [13]. Using this distance the Gaussian kernel
maps this distance into the entries of an affinity matrix
containing the distance between all pair combinations of
spike trains. Then, spectral clustering as proposed by Ng et
al. [14] is applied to the affinity matrix to derive the clusters.
One of the main contributions of this work is the novel
coupling of the spike train distance with spectral clustering
in the way the affinity matrix is defined to achieve truly
unsupervised clustering.

The remainder of the paper is organized as follows. In
section II the distance between two spike trains required
for clustering is defined. Then, in section III, the procedure
for the construction of the affinity matrix and subsequent
spectral clustering algorithm are presented. Section IV shows
the application of the proposed algorithm for clustering of
sets of simulated spike trains under various conditions. We
conclude with a summary of the main accomplishments in
section V.

II. D ISTANCE BETWEEN TWO SPIKE TRAINS

For clustering of data in any format the first requirement
is the definition of distance that evaluates how “close” the
data points are in some space. In machine learning and
pattern recognition, clustering is typically applied to data

1Counting the number of spikes in a sliding window of time.



points in R
n, where n is the dimensionality of the data.

Although many distances can be defined, a natural choice
is the Euclidean distance. Spike trains however are point
processes which are completely specified as a set of spike
times and, for this reason, cannot be clustered as commonly
devised.

As briefly reviewed in the introduction, if clustering is to
be done in terms of firing rate patterns then binning can be
used to transform the spike trains inton dimensional vectors,
with n the number of bins. On the other hand, if the goal is
to cluster spike trains based on synchronous neural activity,
as intended here, then a distance directly dependent on the
spikes times must be used. The reader may think that binning
with small bin sizes (1 ∼ 5ms) could be utilized but we must
remark that in this situation the Euclidean distance is not
sensitive to spikes in neighboring bins which may introduce
artifacts in the distance measure [15].

In the literature two definitions of spike train distances
have gained notorious attention: Victor and Purpura’s non-
Euclidean metric [12], [16] and van Rossum’s [13] distance.
Both of these distances utilize the full resolution of the spike
times, but the latter distance is conceptually and computa-
tionally simpler. Anyway, except for slight adjustments due
to differences in the dynamic range, the algorithm presented
should work with either of these distance measures.
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Fig. 1. Filtered spike train using the causal decaying exponential function.

Simply put, van Rossum’s distance [13] is an euclidean
distance on the continuous functions obtained as filtered
spike trains. Given a spike trainsi ∈ S with spike times
{tim : m = 1, . . . , Ni} the filtered spike train can be written
as

fi(t) =

Ni
∑

m=1

h(t − tim), (1)

whereNi is the number of spike in the recording interval and
h(t) is the smoothing filter impulse response. van Rossum
proposed to use a causal decaying exponential function,
h(t) = exp(−t/τ)u(t), with u(t) the Heaviside step func-
tion, for simplicity and because it is biologically plausible.
Figure 1 exemplifies this concept. Then, the distance between
the ith andjth spike trains is defined as

dij =
1

τ

∫

∞

0

[fi(t) − fj(t)]
2
dt. (2)

However, evaluation of an integral is computational demand-
ing and troublesome. Luckily, for the proposed smoothing
filter the expression can be evaluated directly on the spike
times. Substituting (1) with the exponential filter in (2) and

evaluating the integral yields,

dij =
1

2





Ni
∑

m=1

Ni
∑

n=1

Lτ (tim − tin) +

Nj
∑

m=1

Nj
∑

n=1

Lτ (tjm − tjn)





+

Ni
∑

m=1

Nj
∑

n=1

Lτ (tim − tjn), (3)

whereLτ (·) = exp(−| · |/τ) is the Laplacian function.
Notice that this distance has one parameter,τ . This pa-

rameter controls the effect of near perfectly synchronized
spikes. Because perfect synchrony is virtually impossible
(zero probability in true continuous time) to be found in real
data, the Laplacian function allows for some noise in the
spike times, andτ controls the width of the time interval.

III. SPECTRAL CLUSTERING ALGORITHM

Let S = {s1, s2, . . . , sn} be the set ofn spike trains to
be clustered intok clusters. We use the spectral clustering
algorithm proposed by Ng et al. [14] for its simplicity and
small number of parameters. See Weiss [17] for a review.
Spectral clustering was also shown to have a close relation
with information theoretic methods [18]. The main difference
and the main contribution of this work is in the way the
elements of the affinity matrixA ∈ R

n×n are computed.
Note that theijth entry of the affinity matrix quantifies
the similarity between theith and jth spike trains. The
distance defined earlier is an effective measure of spike
trainsdissimilarity. So, distance and similarity are inversely
related quantities. To achieve the desired effect, we apply
the Gaussian kernel which nonlinearly scales and weights
the distance between spike trains. In this manner, similar
spike trains (smaller distance) have higher affinity values,
whereas uncorrelated spike trains (higher distance) have
smaller values.

The final algorithm, presented step-by-step, goes is as
follows.

1) Compute the affinity matrixA ∈ R
n×n from the n

spike trains. Theijth entry of the affinity matrix is
given by,

aij =











exp

(

−
d2

ij

2σ2

)

, if i 6= j

0, otherwise

(4)

wheredij is the distance between theith andjth spike
trains as defined earlier.

2) ConstructD as a diagonal matrix with theith element
of the main diagonal equal to the sum of all elements
in the ith row of A (or column, sinceA is symmetric).
That is,

di =
n
∑

j=1

aij .

3) Evaluate the matrix

L = (D−
1

2 )A(D−
1

2 ).



4) Find x1, x2, . . . , xk, the k eigenvectors ofL corre-
sponding to the largest eigenvalues, and form the
matrix X = [x1, x2, . . . , xk] ∈ R

n×k.
5) DefineY ∈ R

n×k as the matrix obtained fromX after
normalizing each row to unit norm. Consequently,

yij =
xij

√

∑n

j=1
x2

ij

6) InterpretingY as a set ofn points in R
k, cluster

these points intok clusters with k-means or similar
algorithm.

7) Assign to theith spike train the same label of theith
point (row) of Y .

The clustering itself only depends on one parameter: the
Gaussian kernel size. This parameter regulates the decrease
in the affinity value with the distances between two spike
trains. Anyway, our experimental results revealed a large
insensitivity to the actual kernel size used.

IV. RESULTS

In this section, sets of simulated spike trains are used to
illustrate the application of the algorithm and to study the
influence of the parametersτ andσ in the analysis. We start
by performing clustering on datasets under the ideal situation
that spike times are perfectly coincident. Then, the algorithm
behavior is studied when jitter noise is present in the spike
times. This aims to model a more realistic scenario and to
show that the algorithm still performs as expected.

A. Noiseless case

In the ideal case of perfect synchrony of the spike times,
τ can be made as close to zero as desired (in which case
the Laplacian function converges towards an impulse). Nev-
ertheless, we were interested in evaluating the algorithm’s
performance, measured as ratio of correctly clustered spike
trains, if higher values ofτ were used. In addition, the main
element for the performance of the algorithm was the syn-
chrony level among spike trains. In this context, synchrony
level denotes the relative frequency of synchronous spikesin
the data.

In the analysis, 10 sets of spike trains were generated
for each synchrony level andτ value. Each set comprised
100 spike trains modeled as homogeneous Poisson point
processes and were 2 seconds long with average firing rate of
20 spikes/s. The spike trains were grouped in three clusters.
Initially, each spike trains in this set, modeled as homoge-
neous Poisson point processes, was independently generated
with average firing rate(1 − ε)λ, whereε is the synchrony
level andλ the intended average firing rate (20 spikes/s in
this case). Then, three reference spikes trains (corresponding
to each cluster), also homogeneous and Poisson distributed,
were generated with firing rateελ. The spikes in these spike
trains define ensemble wide synchronous activity. With this
purpose, the spike times from one of the latter spike trains
randomly selected was copied to each of the initial 100 spike
trains. An absolute refractory period of 3ms was enforced
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Fig. 2. Probability of correctly clustered spike trains forthe noiseless case
as a function of the synchrony level for three values ofτ . The Gaussian
kernel size (Eq. 4) was 10.

by removing the nearest spike to a synchronous spike if
necessary.

The relative frequency of correctly clustered spike trains
averaged over 10 realizations (sets of spike trains) is shown
in Fig. 2. As expected, the best results are achieved for the
smallestτ . As discussed before, in this particular example
τ could be chosen as close to zero as desired. In this
context, intuitively we may think that increasingτ increases
the number of spikes considered by the distance measure
which are only due to chance and, therefore, only contribute
“noise” to the distance estimate. Yet, as stated earlier, the
synchrony level is the quantity that effectively controls how
accurate the clustering is. Notice that for the values ofτ
chosen the distance measure employed is most sensitive to
synchrony in the spike trains. For this reason, the synchrony
level determines the separability of the clusters. Furthermore,
for larger synchrony levels the clustering solution becomes
insensitive toτ which is appealing in practice. One might
think that in the independent case the spike trains are
distributed across the space and progressively agglomerate
around some point as the synchrony level increases. This
perspective is depicted in Fig. 3 through the points of the
Y matrix used in the clustering with k-means (step 6 of the
algorithm). Finally, it is worth mentioning that although the
results shown are forσ = 10 we have experimented with
values in the interval5 ∼ 20 without significant differences.

B. With jittered spike times

The scenario depicted in the previous example is idealistic.
In real sets of spike trains perfect synchrony is extremely
unlikely. Consequently, the spike train distance measure must
be capable of accounting for spike times occurring close
in time which may be considered synchronous. Of course,
in doing so the distance also allows for spikes occurring
“close” in time exclusively due to chance to be considered as
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Fig. 3. Evolution of the clusters for the noiseless case as obtained from theY matrix (step 6 of the algorithm) with the increase in synchrony level. In the
plots, red crosses denote points corresponding to incorrectly clustered spike trains. The Gaussian kernel size andτ were set to 10 and 2ms, respectively.

synchronous. The distance proposed by van Rossum’s [13],
and which we use, deals elegantly with this situation by
nonlinearly weighting the contribution of each spike with
the Laplacian function. Theτ parameter controls the effect
of near perfectly synchronized spikes.

In this example, the performance of the clustering algo-
rithm is studied in the presence of jitter noise in the firing
times of the synchronous spikes. The generation of the testing
sets of spike trains follow roughly the same steps as the
previous example, except that when copying the ensemble
synchronous spike times for each spike train, each spike time
is disturbed with zero-mean Gaussian distributed noise.

Figure 4 summarizes the results for two levels of syn-
chrony. With small synchrony level (i.e., smaller number of
actually synchronized spikes) the clusters are not so well
defined and are hard to discriminate. Consequently, it is
not surprising the higher sensitivity to jitter. Conversely,
for greater synchrony levels the good discrimination among
clusters allows for some noise in the distance estimation due

to jitter without sacrificing accuracy. Also noticeable in the
figure is the faster decrease in performance for a synchrony
level of 0.2 whenτ = 2ms. This is completely natural as
a more stringent definition of synchrony is more likely to
disregard synchronous spikes due to the jitter. As for the
previous example, the Gaussian kernel size was not critical
and values in5 ∼ 20 yielded extremely similar results.

V. CONCLUSIONS

This paper proposes a clustering algorithm that finds
groups of spike trains with synchronous activity. The pro-
posed algorithm avoids the difficulty in computing template
spike trains (i.e., cluster “centers”) to which other spike
trains can be matched. This is accomplished through the con-
struction of an affinity matrix which quantifies the similarity
between spike trains and to which spectral clustering can be
applied. The results obtained suggestτ must be carefully
selected according to the feature of interest and knowledge
of the data, whereas Gaussian kernel size is not a crucial
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Fig. 4. Probability of correctly clustered spike trains as afunction of the
spike times jitter standard deviation for two synchrony levels (0.1 and 0.2)
and three values ofτ . The Gaussian kernel size was set to 10.

parameter and a wide range of values can be used.
The methodology employed here exemplifies the use of

spectral clustering as a simple and effective perspective
which eases in defining clustering techniques regardless of
the nature of the data. All that is needed is a similarity
measure that connects the domain of the data to the domain
of the feature evaluated by the similarity measure. Indeed,as
our results show, the clustering obtained in this way largely
depend on which particular feature of the data points the sim-
ilarity measure is sensitive. In the particular case considered
here, the similarity was defined through a nonlinear mapping
(Eq. 4) of van Rossum’s distance [13] which for the range
of time constants employed is most sensitive to the firing
synchrony. Yet, ifτ is increased considerably (50 ∼ 250ms)
then the focus of the measure may be directed towards
similarity in the firing rate patterns. That is to say that in
this method the distance measure time constantτ smears the
distinction in analysis between firing synchrony and firing
rates. It must be remarked however that such property is
not exclusive of van Rossum’s distance. For example, the
parameterq in Victor and Purpura’s [16] distanceDspike[q]
plays a similar role.

For future work it is worthwhile further understanding
how the Gaussian kernel and the distance measure affect the
clustering performance. This might suggest better mappings
and/or distance measures. Moreover, a situation not analyzed
in this work was the effect of the number of clusters. In
the results we assumed the number of clusters to be known.
However, in the general case the actual number of cluster is
unknown and must be estimated.
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