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Abstract—In this paper a clustering algorithm that learns  input spike trains. Note that in establishing these corioest

the groups of synchronized spike trains directly from data 8  similarity is defined directly in terms of synchrony in the
proposed. Clustering of spike trains based on the presence o spike times [8], [9]

synchronous neural activity is of high relevance in neuropks- . . .
iological studies. In this context such activity is thoughtto be To the best of our knowledge, clustering of spike trains un-

associated with functional structures in the brain. In addtion, til now has relied mainly on binnirighe neural activity [10],

clustering has the potential to analyze large volumes of dat [11]. Although this approach is highly attractive since the
The algorithm couples a distance between two spike trains stochasticity in time of the point process is transformed
recently proposed in the literature with spectral clustering. Fi- to randomness in the amplitude of a continuous random

nally, the algorithm is illustrated in sets of computer geneated . .
spike trains and analyzed for the dependence on its paramete ~ PrOCess and, therefore, conventional clustering methads c

and accuracy with respect to features of interest. be employed. However, this approach quantizes time in a
very coarse manner which largely disregards any intenastio
|. INTRODUCTION between single spikes. In fact, this approach is only vdlid i

Current neuroscience research aims at understand htive similarity between spike trains is defined in terms ofrthe
groups of neurons collectively represent information, idiring rate patterns. If instead we define similarity in terofis
opposition to the single neuron studies done is the past [Epike synchrony then the approach of Victor and Purpura [12]
Recent advances in recording devices now allow for mukipleean be used. In fact, their method is applicable with any
electrode recordings that simultaneous collect the agtofi measure of synchrony, but the caveat in this approach is that
many neurons (more that 20) [2]. In fact, current paradigmiéassumes a priori knowledge of some reference spike trains
may require the simultaneous recording of more than 108hich function as cluster prototype data points. Naturally
neurons [2]. Analysis of neural activity is not only fundame this is an unrealistic requirement is the general case.
tal for neurophysiological studies, but also for applicas In this paper we propose a clustering method that, in true
of this knowledge, such as Brain Machine Interfaces (BMIsjpirit of clustering, learns the groups of spike trains refyi
which directly try to map neural activity into behavior [3]-from the data and in an unsupervised manner. We will start
[5]. by defining a distance between two spike trains as proposed

Yet, the enormous volumes of data collected in neurdly van Rossum [13]. Using this distance the Gaussian kernel
recordings make the analysis of this data a daunting taskaps this distance into the entries of an affinity matrix
In addition, because the spike train is defined only it termgontaining the distance between all pair combinations of
of the event times (the firing or spike times) it is in factspike trains. Then, spectral clustering as proposed by Ng et
a point process. Thus, standard statistical signal and dath [14] is applied to the affinity matrix to derive the cluste
analysis tools, such as clustering, are of limited use [1Pne of the main contributions of this work is the novel
This is because these methods were designed to operateconpling of the spike train distance with spectral clusigri
continuous random processes. in the way the affinity matrix is defined to achieve truly

Clustering is an unsupervised learning method developeghsupervised clustering.
in machine learning and pattern recognition that learns The remainder of the paper is organized as follows. In
groups of related data points directly from data [6], [7]section |l the distance between two spike trains required
In the analysis of spike trains, clustering is of particulafor clustering is defined. Then, in section lll, the procedlur
interest since the clusters represent groups of neurofts yiefor the construction of the affinity matrix and subsequent
ing “similar” spike trains. Therefore, neurons resporesiblspectral clustering algorithm are presented. Section bivsh
for spike trains within a cluster are likely to be connectedthe application of the proposed algorithm for clustering of
directly through synaptic connections or indirectly thgbu sets of simulated spike trains under various conditions. We
other neurons. (In neuroscience these functional groups @nclude with a summary of the main accomplishments in
neurons are calledeural assemblieand are thought to be section V.
fundamental cognitive blocks in the brain [8].) In addition
compared to other statistical tools for the analysis of akeur
activity [1], clustering is a tool designed for the analysfs  For clustering of data in any format the first requirement
large volumes of data and accounting for information from als the definition of distance that evaluates how “close” the
data points are in some space. In machine learning and
pattern recognition, clustering is typically applied totala

Il. DISTANCE BETWEEN TWO SPIKE TRAINS
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points in R™, wheren is the dimensionality of the data. evaluating the integral yields,
Although many distances can be defined, a natural choice

is the Euclidean distance. Spike trains however are point 1| & M _ _ Ny N . _
processes which are completely specified as a set of spiketii = 5 S Lt —th)+ > L (th, —t))
times and, for this reason, cannot be clustered as commonly m=1n=1 m=1n=1
devised. N; N; . .

As briefly reviewed in the introduction, if clustering is to + YOS Lt - 1), ()
be done in terms of firing rate patterns then binning can be m=1n=1

used to transform the spike trains intalimensional vectors, whereL,(-) = exp(—| - |/7) is the Laplacian function.
with n the number of bins. On the other hand, if the goal is Notice that this distance has one parameterThis pa-
to cluster spike trains based on synchronous neural activivameter controls the effect of near perfectly synchronized
as intended here, then a distance directly dependent on #fikes. Because perfect synchrony is virtually impossible
spikes times must be used. The reader may think that binnigero probability in true continuous time) to be found inlrea
with small bin sizes{ ~ 5ms) could be utilized but we must data, the Laplacian function allows for some noise in the
remark that in this situation the Euclidean distance is N@pike times, and controls the width of the time interval.
sensitive to spikes in neighboring bins which may introduce
artifacts in the distance measure [15]. Ill. SPECTRAL CLUSTERING ALGORITHM

In the literature two definitions of spike train distances Let S = {si,ss,...,s,} be the set ofr spike trains to
have gained notorious attention: Victor and Purpura’s nome clustered intd: clusters. We use the spectral clustering
Euclidean metric [12], [16] and van Rossum'’s [13] distancealgorithm proposed by Ng et al. [14] for its simplicity and
Both of these distances utilize the full resolution of th&ep small number of parameters. See Weiss [17] for a review.
times, but the latter distance is conceptually and computgpectral clustering was also shown to have a close relation
tionally simpler. Anyway, except for slight adjustmentsedu with information theoretic methods [18]. The main diffecen
to differences in the dynamic range, the algorithm presenteind the main contribution of this work is in the way the

should work with either of these distance measures. elements of the affinity matrixd € R"*" are computed.
Note that theijth entry of the affinity matrix quantifies
@ |1 P SN the similarity between theith and jth spike trains. The

distance defined earlier is an effective measure of spike
® K M\k K trains d|53|mllz?\r_|ty. So, dlstz_:mce and S|m_|lar|ty are inversely
- — . related quantities. To achieve the desired effect, we apply
the Gaussian kernel which nonlinearly scales and weights
Fig. 1. Filtered spike train using the causal decaying egptial function.  the distance between spike trains. In this manner, similar

spike trains (smaller distance) have higher affinity values

) ) _ _ whereas uncorrelated spike trains (higher distance) have
Simply put, van Rossum’s distance [13] is an euclideagmaiier values.

distance on the continuous functions obtained as filtered-l—he final algorithm, presented step-by-step, goes is as
spike trains. Given a spike traigy € S with spike times 5| ows.

gtsm :m=1,...,N;} the filtered spike train can be written 1) Compute the affinity matrixd € R"*" from the n
N, spike trains. Thejth entry of the affinity matrix is
filt) = 3 h(t—1i,), (1) given by,
m=1 2
. . L exp| —=% ], ifi#j
whereN; is the number of spike in the recording interval and Gij = 202 4)
h(t) is the smoothing filter impulse response. van Rossum 0, otherwise
proposed to use a causal decaying exponential function, _ i _ _ i
h(t) = exp(—t/7)u(t), with u(t) the Heaviside step func- whered;; is the distance between thi#h and;jth spike

trains as defined earlier.

2) ConstructD as a diagonal matrix with thi&h element
of the main diagonal equal to the sum of all elements
in the ith row of A (or column, sinced is symmetric).

That is,
di = Z Qij-
However, evaluation of an integral is computational demand J=1
ing and troublesome. Luckily, for the proposed smoothing 3) Evaluate the matrix
filter the expression can be evaluated directly on the spike N .
times. Substituting (1) with the exponential filter in (2)dan L= (D"2)A(D"2).

tion, for simplicity and because it is biologically plaukb
Figure 1 exemplifies this concept. Then, the distance betwee
the ith andjth spike trains is defined as
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4) Find x1,x9,...,xk, the k eigenvectors ofL corre- | |
sponding to the largest eigenvalues, and form th
matrix X = [x1, 2o, ..., xzx] € R™¥F, ook |
5) DefineY € R"** as the matrix obtained fronX after
normalizing each row to unit norm. Consequently, 08k ]
Tij g
Yi = = 5 5 0.7} 1
Y e
o
6) Interpretingy” as a set ofn points in R*, cluster o6 "o —m———"—
these points intdk clusters with k-means or similar | /i © - ¢-tausms | |
algorithm. ' (0" tau=10ms
7) Assign to theith spike train the same label of thith oal & i
point (row) of Y.
The clustering itself only depends on one parameter: th ‘ ] ] ‘

. . . 0 0.05 0.1 0.15 0.2
Gaussian kernel size. This parameter regulates the decre: Synchrony level

in the affinity value with the distances between two spike

trains. Anyway, our experimental results revealed a largdd- 2]; Ptobab}“t)r'] of Corrﬁctly C:ustflrr?d Sﬁike trailns the rrrlﬁisz‘ess case
insensitivity to the actual kernel size used. Ezrselusqggo(rég Af) ooy Ve or three valuesrofThe Gaussian

IV. RESULTS

In this section, sets of simulated spike trains are used to
illustrate the application of the algorithm and to study thdy removing the nearest spike to a synchronous spike if
influence of the parametersando in the analysis. We start Necessary.
by performing clustering on datasets under the ideal $ttmat ' he relative frequency of correctly clustered spike trains
that spike times are perfectly coincident. Then, the athori averaged over 10 realizations (sets of spike trains) is Bhow
behavior is studied when jitter noise is present in the spik8 Fig. 2. As expected, the best results are achieved for the
times. This aims to model a more realistic scenario and @mallestr. As discussed before, in this particular example

show that the algorithm still performs as expected. 7 could be chosen as close to zero as desired. In this
_ context, intuitively we may think that increasingincreases
A. Noiseless case the number of spikes considered by the distance measure

In the ideal case of perfect Synchrony of the Spike t|me§\,/h|Ch are Only due to chance and, therefore, Only contribute
7 can be made as close to zero as desired (|n which Ca‘gé)ise" to the distance estimate. Yet, as stated earli@', th
the Laplacian function converges towards an impulse). Negynchrony level is the quantity that effectively controtsah
ertheless, we were interested in evaluating the algorghm@ccurate the clustering is. Notice that for the valuesrof
performance, measured as ratio of correctly clusterecespikhosen the distance measure employed is most sensitive to
trains, if higher values of were used. In addition, the main Synchrony in the spike trains. For this reason, the synghron
element for the performance of the algorithm was the syd€vel determines the separability of the clusters. Furtiuze,
chrony level among spike trains. In this context, synchronf@r larger synchrony levels the clustering solution beceme
level denotes the relative frequency of synchronous spikes insensitive tor which is appealing in practice. One might
the data. think that in the independent case the spike trains are

In the analysis, 10 sets of spike trains were generatélistributed across the space and progressively aggloenerat
for each synchrony level and value. Each set comprised around some point as the synchrony level increases. This
100 spike trains modeled as homogeneous Poisson poR@rspective is depicted in Fig. 3 through the points of the
processes and were 2 seconds long with average firing ratelofmatrix used in the clustering with k-means (step 6 of the
20 spikes/s. The spike trains were grouped in three clustepdgorithm). Finally, it is worth mentioning that althoughet
Initially, each spike trains in this set, modeled as homogéesults shown are for = 10 we have experimented with
neous Poisson point processes, was independent]y gelhera{%lues in the intervab ~ 20 without Significant differences.
with average firing raté1 — )\, wheree is the synchrony . o
level and\ the intended average firing rate (20 spikes/s ifp- With jittered spike times
this case). Then, three reference spikes trains (correldpgn  The scenario depicted in the previous example is idealistic
to each cluster), also homogeneous and Poisson distributéd real sets of spike trains perfect synchrony is extremely
were generated with firing rate\. The spikes in these spike unlikely. Consequently, the spike train distance measwstm
trains define ensemble wide synchronous activity. With thise capable of accounting for spike times occurring close
purpose, the spike times from one of the latter spike trairia time which may be considered synchronous. Of course,
randomly selected was copied to each of the initial 100 spika doing so the distance also allows for spikes occurring
trains. An absolute refractory period of 3ms was enforcettlose” in time exclusively due to chance to be considered as
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Fig. 3. Evolution of the clusters for the noiseless case &airdd from theY” matrix (step 6 of the algorithm) with the increase in synciyréevel. In the
plots, red crosses denote points corresponding to indtyrrelustered spike trains. The Gaussian kernel size anekre set to 10 and 2ms, respectively.

synchronous. The distance proposed by van Rossum'’s [18), jitter without sacrificing accuracy. Also noticeable het
and which we use, deals elegantly with this situation bfigure is the faster decrease in performance for a synchrony
nonlinearly weighting the contribution of each spike withlevel of 0.2 whenr = 2ms. This is completely natural as
the Laplacian function. The parameter controls the effecta more stringent definition of synchrony is more likely to
of near perfectly synchronized spikes. disregard synchronous spikes due to the jitter. As for the

In this example, the performance of the clustering algd?revious example, the Gaussian kernel size was not critical
rithm is studied in the presence of jitter noise in the firingtnd values irb ~ 20 yielded extremely similar results.
times of the synchronous spikes. The generation of thentgsti
sets of spike trains follow roughly the same steps as the

previous example, except that when copying the ensembleThis paper proposes a clustering algorithm that finds
synchronous spike times for each spike train, each spike tigroups of spike trains with synchronous activity. The pro-
iS disturbed W|th Zero-mean Gaussian distributed noise. posed a|gorithm avoids the d|ff|cu|ty in Computing temp'ate
Figure 4 summarizes the results for two levels of synspike trains (i.e., cluster “centers”) to which other spike
chrony. With small synchrony level (i.e., smaller number ofrains can be matched. This is accomplished through the con-
actually synchronized spikes) the clusters are not so waeitruction of an affinity matrix which quantifies the similgri
defined and are hard to discriminate. Consequently, it setween spike trains and to which spectral clustering can be
not surprising the higher sensitivity to jitter. Conveysel applied. The results obtained suggesmust be carefully
for greater synchrony levels the good discrimination amongglected according to the feature of interest and knowledge
clusters allows for some noise in the distance estimatian dof the data, whereas Gaussian kernel size is not a crucial

V. CONCLUSIONS
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Fig. 4. Probability of correctly clustered spike trains afuaction of the
spike times jitter standard deviation for two synchronyelev(0.1 and 0.2)
and three values of. The Gaussian kernel size was set to 10.

parameter and a wide range of values can be used. [9]

The methodology employed here exemplifies the use of
spectral clustering as a simple and effective perspective
which eases in defining clustering techniques regardless [6f]
the nature of the data. All that is needed is a similarity
measure that connects the domain of the data to the domaim
of the feature evaluated by the similarity measure. Indasd,
our results show, the clustering obtained in this way largel
depend on which particular feature of the data points the simi2;
ilarity measure is sensitive. In the particular case careid
here, the similarity was defined through a nonlinear mappiqgg]
(Eq. 4) of van Rossum’s distance [13] which for the range
of time constants employed is most sensitive to the firinf4]
synchrony. Yet, ifr is increased considerabl$q ~ 250ms)
then the focus of the measure may be directed towargs;
similarity in the firing rate patterns. That is to say that in
this method the distance measure time constasrhears the
distinction in analysis between firing synchrony and firing
rates. It must be remarked however that such property [i&7]
not exclusive of van Rossum’s distance. For example, tqu]
parametey in Victor and Purpura’s [16] distancBSPKel]
plays a similar role.

For future work it is worthwhile further understanding
how the Gaussian kernel and the distance measure affect the
clustering performance. This might suggest better mapping
and/or distance measures. Moreover, a situation not aglyz
in this work was the effect of the number of clusters. In
the results we assumed the number of clusters to be known.
However, in the general case the actual number of cluster is
unknown and must be estimated.
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