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INTRODUCTION

A Structural Average of Labeled Merge Trees
for Uncertainty Visualization

Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, and Bei Wang

Fig. 1. Computing a 1-center tree as a structural average for an input ensemble of six leaf-labeled merge trees in partial agreement.
Top row on the left: six input leaf-labeled merge trees, each visualized by a node-link diagram. Bottom row on the left: each input tree
is visualized with original labels in red and updated labels in green. Right: various uncertainty visualizations for the 1-center tree: (a)
1-center tree with leaf labels; (b) variational vertex consistency plot; (c) statistical vertex consistency plot. (d): summary plot that shows
the interleaving distance between each input tree and the 1-center tree (denoted as AMT).

Abstract—Physical phenomena in science and engineering are frequently modeled using scalar fields. In scalar field topology,
graph-based topological descriptors such as merge trees, contour trees, and Reeb graphs are commonly used to characterize
topological changes in the (sub)level sets of scalar fields. One of the biggest challenges and opportunities to advance topology-based
visualization is to understand and incorporate uncertainty into such topological descriptors to effectively reason about their underlying
data. In this paper, we study a structural average of a set of labeled merge trees and use it to encode uncertainty in data. Specifically,
we compute a 1-center tree that minimizes its maximum distance to any other tree in the set under a well-defined metric called the
interleaving distance. We provide heuristic strategies that compute structural averages of merge trees whose labels do not fully agree.
We further provide an interactive visualization system that resembles a numerical calculator that takes as input a set of merge trees and
outputs a tree as their structural average. We also highlight structural similarities between the input and the average and incorporate
uncertainty information for visual exploration. We develop a novel measure of uncertainty, referred to as consistency, via a metric-space
view of the input trees. Finally, we demonstrate an application of our framework through merge trees that arise from ensembles of
scalar fields. Our work is the first to employ interleaving distances and consistency to study a global, mathematically rigorous, structural
average of merge trees in the context of uncertainty visualization.

Index Terms—Topological data analysis, uncertainty visualization, merge trees
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cal representations that capture features at multiple scales, and enable

In topological data analysis and visualization, topological descriptors
have been used to understand and summarize the shape of complex
data in science and engineering, ranging from gene expression of breast
cancer tumors [44] to high-throughput screening of nanoporous materi-
als [42]. For data modeled as scalar fields, the most popular descrip-
tors include vector-based such as persistence diagrams [25] and bar-
codes [13,32], graph-based such as merge trees [7], contour trees [15],
and Reeb graphs [64], as well as complex-based such as Morse and
Morse-Smale complexes [23,24,31].

These topological descriptors provide meaningful abstractions, re-
duce the amount of data to be processed, utilize sophisticated hierarchi-
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progressive feature simplifications. However, as pointed out by Heine
et al. [36], one of the biggest challenges and opportunities is to develop
original approaches that incorporate uncertainty into topological de-
scriptors to advance topology-based visualization. In this paper, we
focus on merge trees, which are a special type of topological descriptor
that tracks the evolution of connected components in the sublevel sets
of scalar fields [47]. We compute structural averages of a set of labeled
merge trees (referred to as an ensemble), and utilize such averages in
uncertainty visualization. Our work is motivated from a statistical and
a visualization perspective.

Statistics on topological descriptors. In statistics, the concept of
an average refers to a measure of central tendency. Given a set of
numbers, the notions of mean, median, and mode are considered as
numeric averages in different contexts. In this paper, we study a certain
structural average among a set of labeled merge trees. In particular,
we would like to find a metric 1-center of a finite set of labeled merge
trees; that is, an average tree that minimizes the maximum distance to
any other tree in the set. Given a metric space (X,d), a 1-center of a
finite point set P = {py,-+-,pm} C X is a point ¢ € X which satisfies
c=arg n}gl}r(l InEa;ch (x,p),i.e., c € X is the center of a minimum enclosing
xeX p

the ball of P. Here, our metric space is the space of all labeled merge
trees equipped with a metric referred to as the interleaving distance for
labeled merge trees [48]. The 1-center is our notion of an average tree.



Our implementation in computing a 1-center is a first step toward
performing statistical analysis of merge trees. By introducing a poten-
tially extendable metric between labeled merge trees, we envision a
complete suite of statistics describing the probability distribution of
graph-based topological descriptors.

Visualization of uncertainty. Advances in technology such as in-
creased bandwidth, storage, and computational power have led to a
large amount of complex data. To effectively and accurately commu-
nicate such data to scientists via visualization, we should pay close
attention to information about uncertainty, including accuracy, confi-
dence, variability, and model bias [8].

Conveying uncertainty information through visualization, i.e., un-
certainty visualization, is a very active area of research; e.g., see sur-
veys [33,62,71]. Uncertainty information is often summarized via
statistical quantities (such as mean, median, and standard deviation)
and encoded with data via color, opacity, texture, glyphs, animation,
etc. [62]. Uncertainty for 1D scalar fields is often expressed point-wise
as error bars or boxplots [59]. In the case of 2D and 3D scalar fields,
uncertainty can be encoded feature-wise within spatial domains (such
as contours [57,58,75], 2D surfaces [60], and 3D volumes [22,61]), as
well as structure-wise as trees [41] or lattice graphs [19].

The challenges associated with the study of structure-wise uncer-
tainty in graph-based descriptors can be attributed, in part, to the dif-
ficulty in characterizing and quantifying their structural uncertainty.
In particular, ensemble datasets combining multiple realizations of a
phenomenon are often used to mitigate the effects of uncertainty. State-
of-the-art approaches typically aggregate over inherent data dimensions
to reduce the structure and size of the data. Unfortunately, these aggre-
gations can lose the richness in both global and local structures. For
instance, a scalar field obtained by averaging the values from all the
ensemble scalar field members at each data point (as a form of aggrega-
tion) was treated previously as the ensemble mean, and the contour tree
of the ensemble mean was referred to as the mean contour tree [77].

In this regard, our work differs from previous approaches signifi-
cantly. First, instead of computing a merge tree from an average scalar
field, we calculate an average merge tree directly from a set of input
trees that perhaps arise from an ensemble, and use such an average to
encode uncertainty. Second, constructing an average labeled merge tree
has a clean, mathematical foundation via a metric-space view, and does
not rely on ad hoc operations. To the best of our knowledge, our work
is the first to employ interleaving distances and consistency measures
to study a mathematically rigorous structural average of merge trees in
the context of uncertainty visualization.

Contributions. In this paper, we compute and visualize a structural
average of labeled merge trees. Our work builds upon theoretical
foundations regarding interleaving distances between labeled merge
trees [30]. Such a distance is chosen because, unlike many of the
other metrics available for merge trees, it is easily computable. It is
also stable with respect to the input function data [48], and has a well-
defined 1-center as well as geodesics. Our main contributions are the
algorithms, implementations, and visualization design in moving from
theory to practice, all of which are highly nontrivial.

* We provide an interactive visualization system to demonstrate
the utilities of our proposed algorithms. It resembles a numerical
calculator that takes as input an ensemble of leaf-labeled merge
trees and outputs a tree as their structural average.

* We introduce heuristic strategies that complete the labelings for
an ensemble of merge trees whose labels do not fully agree in
order to provide structural averages.

* We highlight structural similarities between the input and the
average tree and incorporate uncertainty information for visual
exploration. To achieve this, we develop a novel measure of
uncertainty for each vertex in the tree, via a metric-space view
of the input trees. This measure is also flexible, allowing a local-
global tradeoff in understanding structure variations.

* We demonstrate an application of our framework through merge
trees that arise from ensembles of scalar fields.

Our framework is applicable to merge trees of the most general form;
we give an additional example of applying our framework to merge
trees derived from neuron morphology in Appx. F. Our visualization
tool and algorithms are released open source under MIT license on
Github: https://github.com/tdavislab/amt.

2 RELATED WORK

We review the most relevant literature on uncertainty visualization of
scalar fields, with a focus on graph-based topological descriptors and
topological features. Our work is primarily concerned with structure-
wise data uncertainty of scalar fields; for vector and tensor fields, see
an overview in [36].

Graph-based topological descriptors. Graph-based topological de-
scriptors include merge trees [7] (also known as barrier trees [27] or join
trees [15]), contour trees [15], Reeb graphs [64], mapper graphs [67],
and joint contour nets [14]. These descriptors are graph-based repre-
sentations to illustrate how the topology of level sets or sublevel sets of
scalar fields changes with a scalar value parameter.

For a topological space X equipped with a function f : X — R, the
merge tree encodes the connected components of the sublevel sets
f~Y(—oo,a] for a € R. A closely related descriptor, the Reeb graph,
encodes the connected components of the level sets f~! (a) instead. The
contour tree [15] is a type of Reeb graph when X is simply connected.
All these descriptors are related to Morse theory [46] and level-set
topology through relations among critical points. They are widely
applied in scientific visualization [49,74,76].

Since a contour tree of a function f : X — R can be constructed by
carefully combining the merge trees of f and —f in linear time [15],
merge tree visualization shares the same design space as that of a con-
tour tree. Contour trees are often visualized with node-link diagrams in
two or three dimensions [15,51,52,70]. Such diagrams are simple and
powerful tools for abstract data representations [74], contour extrac-
tion [73], and data explorations in various application domains [2,52].
Many attempts have been made in contour tree visualization to over-
come difficulties in visual interpretation, visual clutter, and missing
topological features [78].

Uncertainty visualization of topological features. Critical points
and contours (level sets, iso-surfaces) are important features for the
study of scalar field topology. When data is affected by uncertainty,
visualization of such topological features should adapt accordingly.

Mihai and Westermann [45] measure the likelihood of the occurrence
of critical points with respect to both the positions and types of the
critical points. Specifically, when the data uncertainty is described
by a Gaussian distribution, confidence intervals are derived for the
gradient and the determinant and trace of the Hessian matrix in scalar
field ensembles to infer confidence regions for critical points [45].
Gunther et al. [35] characterize critical points and their spatial relation
for 2D uncertain scalar fields, where each vertex in a regular grid is
assigned a probability density function (PDF) describing its scalar value.
They identify so-called mandatory critical points — spatial regions and
function ranges where critical points have to occur in any realization of
the input based on the PDF.

To visualize the effect of uncertainty on contours, envelopes within
a gridded domain are extracted to indicate in which volume the contour
will lie (with a certain confidence) [50,80]. Uncertainty associated with
a contour can also be rendered via animation [10] or as a collection of
points where each point is displayed from “its original location along
the surface normal by an amount proportional to the uncertainty at
that point” [34]. Positional and geometrical variations of contours
are captured by variability in gradients for uncertain scalar fields [54].
Positional uncertainty of contours could also be encoded by spatial
correlation [55, 56] or numerical sensitivity [57]. Building on the
notions of functional boxplots and data depth, contour boxplots [75]
display statistical quantities analogous to the mean, median, and order
statistics for ensembles of contours.

Finally, from an algorithmic perspective, probabilistic marching
cubes [58] and positionally uncertain iso-contours [57] study the uncer-
tainties inherent in computing the visual representations.


https://github.com/tdavislab/amt

Uncertainty visualization of graph-based decriptors. Lee et al. have
introduced CandidTree, which merges two trees into one and visualizes
both location and subtree structural uncertainty [41]. Wu et al. have
developed an interactive visualization tool that uses contour trees as
abstract data representations to explore data-level uncertainty, contour
and topology variability [77]. Kraus has employed grayscale morphol-
ogy to visualize uncertain substructures in contour trees [39]. Zhang
et al. have proposed sampling-based Monte Carlo methods to study
contour trees of uncertain terrains, where uncertainty lies in the height
function described by a probability distribution [81]. The work most
relevant to ours is [77], where a mean contour tree is computed as the
contour tree of the mean of an ensemble. However, our work differs sig-
nificantly from [77] in that instead of computing a tree from an average
of the ensemble members, we compute an average tree directly from a
set of input trees (that potentially arise from ensemble members).

Distances between topological structures. Recently, many metrics
have been proposed for merge trees, often by way of a restriction from a
metric on the more general Reeb graph [3-7,16,20,47,69]. In this paper,
we focus on the interleaving distance for labeled merge trees [48]. This
distance is an example of an interleaving distance between persistence
modules [17], which is brought to graph-based descriptors such as
merge trees [47] and Reeb graphs [20] via category theory [11,21].

The application of the interleaving distance to labeled merge trees
can also be viewed as an interpretation of a metric for phylogenetic
trees [12]. Our framework differs from the previous work as it relies
on a clean and simple metric-space view of input trees that is equipped
with geodesics, as well as easy-to-implement algorithms.

3 TECHNICAL BACKGROUND

We first review mathematical notions in graph theory and computa-
tional topology, including merge trees, labeled merge trees, and the
interleaving distance on labeled merge trees. We then introduce leaf-
labeled merge trees with full, partial, or no label agreements, which
are structures we deal with in our algorithms. We end this section by
giving an example of a scalar field induced merge tree, that is, a merge
tree that arises from a scalar function on a topological space.

3.1 Theoretical Foundations for Labeled Merge Trees

Our implementation and visualization design is built upon theoretical
foundations established in [30], which focus on labeled merge trees of
the most general form, and which we review below.

Merge trees and labeled merge trees. A tree is an undirected graph
in which any two vertices (nodes) are connected by a unique path. A
rooted tree is a tree in which a special vertex is chosen to be the root.
The degree of a vertex is the number of edges incident to the vertex.
We assume the root is of degree 1.

Let T = (V,E) denote a rooted tree with vertex set V and edge set
E. The leaves L C V of T are the nonroot vertices of degree 1; other
nonroot vertices are internal vertices.

Definition 3.1. A merge tree is a pair (T, f) consisting of a rooted
tree 7 and a function f : V — RU {eo} such that f(u) # f(v) for all
uv € E, f(v) = oo if and only if v is the root, and every nonroot vertex
has exactly one neighbor with a higher function value.

A scalar field induced merge tree is a special case of a merge tree in
Definition 3.1, which we review in Sec. 3.3. We require f(v) = co for the
root v for technical reasons. We also require f(u) # f(v) foralluv € T,
in practice, this can be achieved by the simulation of simplicity [26].
For any pair of vertices u,v € V, we write a(u,v) € V for their lowest
common ancestor; that is, the unique vertex of minimum function value
such that the unique path from a(u,v) to either u or v strictly decreases
in the value of f. Then f(a(u,v)) denotes its function value. For ease
of notation, let [1] := {1,...,n} denote a label set.

Definition 3.2. A labeled merge tree 7 is atriple (T, f, 1) that consists
of a merge tree (T, f) along with a map p : [n] — V called a labeling
that is surjective on the set of leaves L C V. When we need to emphasize
the number of labels, we will call this an n-labeled merge tree.

Let |T| = m be the size of the merge tree, or in other words, the
number of nonroot vertices in the tree. Note that the definition permits
trees with labeled internal vertices as well as vertices with multiple
labels; see Fig. 2 (left) for an example. Surjectivity on L means that n,
an arbitrary positive integer, satisfies n > |L|. For practical purposes,
we will usually have n < m, but this is by no means required. Finally,
a merge tree (7, f) without a labeling is referred to as an unlabeled
merge tree.

Induced matrix and interleaving distance. We can build a matrix
from a labeled merge tree. The induced matrix of an n-labeled merge
tree 7 = (T, f,u) is the symmetric matrix 2 € R"" where %;; =
Sfla(u(i),1(j))). See Fig. 2 (middle) for an example of an induced
matrix. The reason for turning the trees into matrices is that we can
immediately use a natural choice of distance between the matrices to
obtain a distance between the trees as follows:

Definition 3.3. Given two n-labeled merge trees 7! = (17, fi, ;) and
T? = (D, f>,2), the (labeled) interleaving distance between them
is defined to be the L., distance between their corresponding induced
matrices 2! and 22, namely d;(7', 7%) = |2' — 2?||e.

Notice that Definition 3.3 requires that the two given trees have the
same labeling, so that they are both n-labeled merge trees.

Labeled merge tree of a valid matrix. We can also turn certain ma-
trices back into trees. A symmetric matrix 2 € R"*" is called valid
if Z; < @;j for all i, j. A valid matrix encodes a function f on the
complete graph K of n vertices modeled after n labels, with function
value Z;; on the vertex i and ;; on the edge ij.

The labeled merge tree of a valid matrix 9 € R"™", denoted
MergeTree (2), is the labeled merge tree of the complete graph with
the induced function f. For a fixed a € R, let K, = f~!(—oo,da]. Such
a merge tree is obtained by tracking the connected components of
K, as a increases. See Fig. 2 (right) for an example and Sec. 4 for
implementation details.

A valid matrix 2 is called ultra if %;; < max{%;,%;}. The in-
duced matrix of a labeled merge tree is an ultra matrix; in fact, this
construction induces a bijection between the space of labeled merge
trees and the space of ultra matrices [30].

It has been shown that the interleaving distance defined above enjoys
nice properties including stability [48]; in particular, two theoretical
results from [30] that are central to our paper are included here for
completeness. Theorem 3.1, which is a proposition from [30], lays the
foundation for computing a 1-center for a set of labeled merge trees.

Theorem 3.1 (Proposition LMT 1-Center [30]). Given n-labeled merge
trees T1,..., T% and their corresponding induced ultra matrices
D',... D5 let D be the element-wise 1-center of 2',..., D%, Set
T =MergeTree (Z). Then 7 is a 1-center of the labeled merge trees
T .., Tk

Note that when using the L., distance, the 1-center for the matrices is
not unique. However, it is easy enough to compute one of these, which
we will make use of in our implementation described in Sec. 4. The
next theorem implies the existence of an animated morphing between
trees, which is also used in our implementation.

Theorem 3.2 (Corollary LMT Geodesics [30]). Given any two
n-labeled merge trees ' and T2 and their corresponding in-
duced ultra matrices 2" and 9%, the family of merge trees

{f’l := MergeTree (@’1) [A €O, 1]} defines a geodesic between
T and T in the metric dy where 2* = (1— 1) 2" + A 22,

3.2 Leaf-Labeled Merge Trees
We will focus on a restricted class of labeled merge trees defined as
follows. Recall [n] :={1,...,n}.

Definition 3.4. A leaf-labeled merge tree 7 is a triple (T, f, ) that
consists of a merge tree (7, f) together with a labeling @ : § — L that
is surjective on the set of leaves L, where S C [n].
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Fig. 2. An example of a labeled merge tree (left) that permits labels on internal vertices and multiple labels on a single leaf, together with its
induced matrix (middle). The solid black vertex is the root, and white vertices are labeled. The tree has four nonroot vertices and two leaves. Right:
construction of a labeled merge tree from the ultra matrix that recovers the original tree.

Unlike Definition 3.2, leaf-labeled merge trees allow labels only
on the leaves. Also, unlike the traditional definition of a leaf-labeled
tree where each of its leaves is labeled by precisely one element from
a given label set [37], Definition 3.4 permits multiple labels on the
same leaf. The set of leaf-labeled merge trees can be considered as a
subset of labeled merge trees by considering @ as a restriction of u to
a subset of [n]. Up to reindexing the label set, the properties involving
induced matrices (Theorems 3.1 and 3.2) and interleaving distance
(Definition 3.3) therefore apply to leaf-labeled merge trees.

Full agreement, partial agreement and disagreement. In our imple-
mentation, we work with input data with various levels of labeling, so
we discuss some terminology for various types of missing information
next. First, an ensemble of leaf-labeled merge trees {(7;, ﬁ,a)i)}f.‘zl
is in full agreement if the trees all share the same label set; that is, if
the domain of ®j; is the same for all i. Second, an ensemble of leaf-

labeled merge trees {(T;, f;, &) }*_, is in partial agreement if the trees
are not in full agreement and ﬂf-‘:l S; # 0. Third, an ensemble of leaf-
labeled merge trees {(7;, f;, a)i)}fF:1 is in disagreement if ﬂf;l S;i=0.
Ensembles of the second and the third type can also be treated as being
partially labeled and unlabeled, respectively, although we rarely use
these terminologies here.

3.3 Merge Trees from Scalar Field Ensembles

Of particular interest to visualization is merge trees that arise from an
ensemble of scalar fields. Each tree captures the connectivity of the
sublevel sets of a scalar field. In this paper, we refer to it as a scalar
field induced merge tree.

Given a scalar function f defined on a topological space X, f : X —
R, let X, := f~!(—o0,a] denote the sublevel set of f for some a € R.
Two points x,y € X are equivalent, x ~ y, if they have the same function
value, so f(x) = f(y) = a, and if they belong to the same component
of the sublevel set X,,. The quotient space X with respect to the above
equivalence relation, X/ ~, is referred to as a scalar field induced merge
tree to differentiate it from the more general Definition 3.1. We still
refer to such a tree as a merge tree when it is clear from the context.

A scalar field induced merge tree is constructed by tracking the evo-
lution of the components of X, as we vary the parameter a. Fig. 3 gives
an example: leaves represent the creation of a component at a local min-
imum, internal vertices (saddles) represent the merging of components,
and the root represents the entire space as a single component; see a
straight line drawing in Fig. 3(c). We can further augment a scalar field
induced merge tree with noncritical points, producing an augmented
merge tree [15, Section 3.3]; otherwise it is unaugmented. In this paper,
we always visualize an augmented merge tree by embedding its vertices
(both critical and noncritical) inside the graph of £, as in Fig. 3(b).

3.4 Distance Between Vertices

Not only do we use distances between the trees themselves, but we
also make use of a couple of different distances between vertices of
a given merge tree for our implementation. Such distances impose a

Fig. 3. (a) A 2D scalar field f is generated by a mixture of three Gaussian
functions. lt is visualized using a rainbow color map: red means high
and blue means low values. (b) The graph of f, i.e., the set of all ordered
pairs (x, f(x)), is visualized together with the corresponding augmented
merge tree of f. (c) A straight line drawing of an (unaugmented) merge
tree of fin 3D.

metric-space view of input trees and are useful both when handling
merge trees with partial or no agreement (Sec. 4.2), and in helping to
define consistency of vertices in Sec. 5.

Assume we are given a labeled merge tree 7 = (T, f, ®). The first
distance is an intrinsic distance on the merge tree 7 induced by the
function f. Specifically, the intrinsic tree distance between a pair
of vertices x,y € V is defined to be dr(x,y) = |f(x) — f(a(x,y))| +
|f(a(x,y)) — f(y)|- Note that this is exactly the path length between
the vertices if we give every edge a weight equal to the difference in
function values of its endpoints.

Now suppose, additionally, that .7 has an embedding 1 in R?, 1 :
|T| — R? (in our experiments, d = 2 or 3). The second distance, the
Euclidean distance between a pair of vertices x,y € V, is the L, distance
between their embeddings, dg (x,y) = ||t (x) —t(»)]|2-

4 COMPUTING 1-CENTERS OF LABELED MERGE TREES

Moving from theory to practice, we now discuss implementation details
for computing a 1-center of leaf-labeled merge trees. We compute
a structural average under three different scenarios: full agreement,
partial agreement, and disagreement. For simplicity of explanation,
we focus on leaf-labeled merge trees. Our algorithms and uncertainty
encodings (Sec. 5) can be easily adapted to handle general merge trees
with labeled internal vertices (Definition 3.2).

4.1 Full Agreement

We start with the simplest case: given an ensemble of leaf-labeled
merge trees in full agreement, we compute its 1-center as a structural
average. As specified by Theorem 3.1, the main idea is to compute an
element-wise 1-center of their induced ultra matrices and convert the
resulting valid matrix into a new merge tree.

We start with an ensemble of k leaf-labeled merge trees in full
agreement, g1 TN Tk e, they all share the same label set S C [n],
with |S| = s. On a high level, our algorithm has three simple steps:

F1. Represent each .77 by its induced ultra matrix 2’ for 1 <i < k.
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Fig. 4. Computing a 1-center for a pair of leaf-labeled merge trees in
full agreement. The top row shows two input trees 7' and 72 (with
three labeled leaves each) together with the output 1-center . The
middle row displays the induced ultra matrices 2' and 2 together with
their element-wise 1-center, matrix &, which encodes a function f on the
complete graph K. The bottom row shows K and its sublevel set filtration.
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F2. Compute the element-wise 1-center 2 of 2! ,--. | I,
F3. Turn & back into a merge tree .7 = MergeTree (2).

An example for two leaf-labeled merge trees 7! and .72 in full agree-
ment is given in Fig. 4. )

Assume each tree 7' = (T}, f;, @;) induces an ultra matrix 2" € R¥*S
indexed by the shared label set S C [n]. For step F2, we construct a
choice of 1-center by computing the 1-center of each element,

1 )
@ij = 5 max{@fj}lzzl _min{@i/j}]z:l : M

Intuitively, Z;; is the center of a minimum enclosing ball of points

9111, e ,9{‘] on a line, i.e., the midpoint between the smallest and the
largest values along the line.

For Step F3, we turn & back into a new merge tree J =
MergeTree (2). Despite the fact that the matrices 2 are ultra matrices,
the construction of Eq. (1) is not guaranteed to be ultra. However, it
will be a valid matrix, and thus it encodes a function f on the complete
graph K among n labels as vertices, f : K — R. Specifically, each ver-
tex v; € K has value f(v;) = Z;;; while each edge e;; = (v;,v;) € K has
function value f(e;;) = Z;;. That & being a valid matrix guarantees
that the function value of an edge is larger than or equal to that of each
of its endpoint. The returned merge tree follows the standard merge
tree construction described below.

Denote the sublevel set of K for a € R by K, := f~!(—o0,a]. The
merge tree of f is defined on the vertex set of K and keeps track
of the connected components in K,. As a increases from —oo to oo,
vertices in K creates new components in the tree, and edges in K
either connect two vertices already from the same components, or
merge existing components. We adapt Kruskal’s algorithm that runs in
time O(|E|a(|V|)) (a denotes the inverse of the Ackermann function),
processes vertices/edges in a sorted order, and maintains connected
components in a disjoint set data structure [28,29] that supports fast
component identification and merging [68].

By Theorem 3.1, .7 is a 1-center of the leaf-labeled merge trees.
Such a 1-center is not necessarily unique; nevertheless it serves as a
justifiable structural average as it minimizes the maximum distance to
any other tree in the set under d;. Note that we allow multiple labels
on the same leaf to ensure that this definition is well defined. See an
example from Fig. 6 generated from our visualization system.

Fig. 5. Updating the labeling of .77 against a pivot tree .77.

4.2 Partial Agreement

We now discuss strategies to turn incomplete information in terms of
labeling into complete information so that the algorithm of Sec. 4.1
can be utilized. Given an ensemble of trees whose labels do not fully
agree, finding the best ways to label the remaining vertices boils down
to finding the best correspondences under the interleaving distance,
which is unfortunately NP-hard [1]. We thus aim to develop a heuristic
approach that is efficient and effective in practice for both the partial
agreement and disagreement cases.

Assume we are given an ensemble of leaf-labeled merge trees
D, T in partial agreement. If S; is the label set for tree .7, let
S = ﬂ{-;l S; be the shared set of labels. For simplicity, we assume
leaves do not have multiple labels for the input trees. On a high level,
our algorithm is as follows:

P1. Select a pivot tree T¥ = (T, fp, @p) with the largest number of
leaves among the input trees. Let S, be its label set.

P2. Convert each ensemble member 77 = (T}, f;, ;) to a labeled tree
Z!' = (T/, f;, »!) by updating its labeling using the label set S,
combined with minimum weight matching.

P3. Compute a 1-center of the trees 1, ---, 9} using Sec. 4.1.

The key step is P2, for which we first give a pictorial toy example in
Fig. 5 (top). The main idea is to study the structural similarities between
unmatched leaves by comparing their distances (a linear combination
of dr and dg) to the matched leaves and solving a minimum weight
matching problem. We also give an example in Fig. 1 generated from
our visualization system.

Algorithmic details. Recall that a matching in a bipartite graph is
a set of the edges chosen in such a way that no two edges share an
endpoint. A vertex is matched if it is an endpoint of one of the edges
in the matching. Otherwise it is unmatched. A maximum matching
is a matching of a maximum number of edges. An assignment (or a
minimum weight matching) problem, in our setting, is the problem of
finding, in a weighted bipartite graph, a maximum matching in which
the sum of weights of the edges is as small as possible.

We describe our algorithm with the toy example given in Fig. 5.
Given a pivot tree .77 with a label set S, = {1,2,3,4}, we update the
labeling for an ensemble member .7 using S p- The matched (shared)
label set between the two trees is S = {1,2}, and the unmatched label
sets in 77 and 7' are U, = {3,4} and U; = {5}, respectively. Our
goal is to assign new labels to U; from the set U), as follows.

First, build D), to be a pairwise distance matrix with rows correspond-
ing to unmatched labels U, and columns corresponding to matched
labels S. Forx € U, and y € S, D (x,y) is the distance between leaves
p(x) and wp(y). The matrix D; is built similarly for tree .7;. Note that
both D), and D; have the same number of columns, but potentially a
different number of rows. In our example, using the tree distance dr,

we have D), = (g g) and D; = (6 6).
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Fig. 6. Computing a 1-center for an ensemble of six leaf-labeled trees in full agreement (top row) and disagreement (botton row). (a, d) 1-center tree;
(b, e) variational vertex consistencies plots; (c, f) statistical vertex consistency plots. For the ensemble in disagreement, original labels are omitted;

updated labels are green.

Second, construct a complete, weighted bipartite graph with vertex
sets U; and U, where the weight ¢y, between alabel x € U; and y € U, is
given by the L, distance between the rows from D; and D, respectively.
We find a minimum weight matching in this bipartite graph that gives
an assignment of the rows of D; (unmatched labels in an ensemble
member) to the rows of D), (matched labels in the pivot tree).

Formally, let b be a Boolean matrix where by, = 1 if and only if a
leaf x € U; is assigned to a leaf y € Uj,. Then the optimal assignment has
acost: min},, ¥, cxybxy. We then use the SciPy Python library to find a
minimum cost matching, which employs the Hungarian algorithm [40].
Since .77 was chosen to have the maximum number of leaves over
all trees, |U;| < |Up|, and thus an optimal assignment will saturate all
vertices in U;. Thus, the output is a complete assignment 1) : U; — U),
of minimal cost. We then define @] (x) = 1(x) for x € U;, and ] (x) =
;(x) otherwise.

At this point, we might still have unmatched labels U [', in the pivot
tree 7P. We use a greedy algorithm to assign each such label to a leaf
in the input tree based on its local structure similarity. In the example,
we compute an updated matrix D;, between the remaining unmatched

label Uy, = {4} and the matched labels ' = {1,2,3}, obtaining D), =
(5 5 3) . We then compute the pairwise distance matrix between all
0 2 6
2 0 6
6 6 0
a label x € S; and a label y € U1/7 is again given by the L, distance
between the rows from D; and D;,, respectively. The leaf with the label
x now obtains an additional label y when cjcy achieves its minimum. In
the toy example, the leaf in .77 with a label 3 obtains an additional
label 4. In other words, the labeling @' is further updated by including
the label 4 in its domain.

matched labels for 77 as D} = . The weight |, between

4.3 Disagreement

To compute a 1-center for an ensemble of leaf-labeled trees in dis-
agreement, we again employ a labeling strategy that converts the trees
to leaf-labeled trees in full agreement, and then apply the algorithm
in Sec. 4.1. To find the labels, however, we now assume each tree
T; = (T;, fi, @) comes with a geometric embedding t; : |T;| — R4. Our
algorithm below is very similar to the partial agreement case; see Fig. 7
for an example.

D1. Select a pivot tree 77 with the largest number of leaves. Let S,
be its label set.

Update the initial labeling of each ensemble member .77 by cre-
ating a new labeling using the label set S, and a minimum weight

matching. The updated tree is denoted as 7 7,
S T¥ following Sec. 4.1.

D2.

D3. Compute a 1-center of the trees .7 1/,

In Step D2, for each ensemble member .77, we assume S; N S p=0
(otherwise, we follow the identical algorithm in Sec. 4.2). We create

1 2 3 4 5 6 7 51

6374 1,2 3 4

Fig. 7. Updating the labeling of .77 against a pivot tree .77.

a weighted, complete bipartite graph between the label sets S; and S,
where the weight cy, between a label x € S; and a label y € §), is their
Euclidean distance in the embedded space, cx, = dg (1:(x),1,(y)). We
again solve a minimum weight matching problem. The output is a
complete assignment 7] : §; — S, of minimal cost. We then define
o/(x) = n(x) for x € S;. Since |S;| < |Sp|, for any unmatched label
y € Sp, we follow a similar strategy as in Sec. 4.2, and o/ is updated
accordingly.

5 ENCODING UNCERTAINTY

Given an ensemble of labeled merge trees ', ... ,.7 k and their 1-
center 7, we work toward a visualization that highlights the structural
consistency between each member .7 and .7. To this end, we develop
a novel measure of uncertainty via a metric space view of trees in the
ensemble. This measure is also flexible, allowing a local-global tradeoff
in understanding structure variations. In particular, we compute and
visualize vertex consistency following a strategy based on Gaussian-
weighted cosine similarity. Our consistency measures apply to general
labeled merge trees as in Definition 3.2, not just leaf-labeled ones.

5.1 Computing Consistency for a Pair of Trees

Cosine similarity and weighted cosine similarity. Cosine similarity
is a measure of similarity between two nonzero vectors that measures
the cosine of the angle between them. Let A = [A,--- ,A,] and B =
[B1,: -, Bm] be two nonzero vectors of length m. Their cosine similarity

A;B;
is sim(A,B) = \/):L\/ﬁ

a Gaussian-weighted cosine similarity given by
A2+B}
Y (e* 7 AiB; )
242 287 '
(zie‘m%) : <z,-e‘723%)

Note that this similarity provides a “soft-threshold” for entries of A and
B, so that entries smaller than O(8) play a more important role in the
similarity measure. In general, smaller values of the A;’s and B;’s are
more important. If we remove all exponential factors in Eq. (2), then it
becomes the standard cosine similarity.

With respect to the parameter 8, we use

simg(A,B) = 2)
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Fig. 8. User interface for the interactive visualization of labeled merge trees and their 1-center.

Vertex consistency. Given two labeled merge trees 7! = (Ty, f1, 1)
and 72 = (T, f2, 12), we want to compute the consistency of vertices
in 7! with respect to vertices in .72. For simplicity, we assume that i1,
and U, are bijective on the set of vertices V| and V5, respectively (thus
all vertices of 7! and .72 have unique labels). Let |S;| = |S;| = s be
the number of labels.

Let Vi = {v1,...,vs} and Vo = {wy,...,ws} be the labeled vertices
for 77 and 75, respectively, where v; corresponds to w;. Assume the
chosen metrics between vertices in 77 and 75 are d and d5, respectively,
and fix a label /. We wish to measure the “consistency” of node v;
of 71 with node w; of T>. To do this, consider the two vectors A =
[dl (V17V[)7 ce 7d1 (VS7V1)] and B = [dZ(W1>W[)7 s 7d2(w57wl)]' That iS,
A (resp. B) is the vector of distances from v; (resp. w;) to all other
vertices (ordered by the labels). Intuitively, A (resp. B) summarizes
how all other vertices relate to v; (resp. to w;) from a metric point of
view. Hence, to measure the consistency between v; and w;, we use the
Gaussian-weighted cosine similarity between these two vectors; that is,
the vertex consistency between vy and wy is simg(v;,w;) := simg (A, B).
This consistency (similarity) value ranges from O to 1, and it is 1 if and
only if A =B.

Intuitively, § is a locality parameter: distances larger than, say, 36,
will essentially be ignored, so this in effect is a soft thresholding where
only nearby neighbors of v; and w; are being considered. By adjusting
8, we can change the neighborhood size. Setting § = o, we recover
the traditional cosine similarity. The larger sim(v;,w;) is, the more
consistent vertices v; and w; are with each other.

We define the vertex consistency of 7! (with respect to .72) as a
function defined on the vertices of 7!, oy : V; — R. For a vertex with
alabel [, a; (v;) = simg(v;,w;) forv; € Vi and w; € V5. ap : Vo — Riis
defined similarly.

5.2 Visual Encoding of Consistency for an Ensemble

We describe visual encodings for vertex consistencies for an ensemble
member, variational consistencies, and statistical consistencies for the
1-center tree. )

We encode vertex consistency for an ensemble member .7 (with
respect to the 1-center .7) using glyphs; see Fig. 9(left). Specifically,
given a vertex consistency ¢; : V; — R, the radius of each circular glyph
at a vertex v € V; scales proportional with ¢ (v).

We encode variations in vertex consistencies for the 1-center tree .7
using visual primitives inspired by [65, 66]; see Fig. 9(middle). For the
1-center tree with vertex set V, multiple vertex consistency functions
are defined with respect to k ensemble members, ¢, , 0 : V — R.

@ maximum
@ third quartile
@ median

®

() first quartile

@ minimum

Fig. 9. Left: circular glyphs are used to encode vertex consistencies for
an ensemble member. Graduated circular glyphs are used to encode
variational (middle) and statistical (right) vertex consistencies for two
1-center trees.

Let & be their mean value. Let (x}’ :=|o; — @|, and we compute the
sequence of variations {c/,..., 0} as deviations from the mean @.

The radius r; of the i-th circular glyph is r; = ‘gg'i [66], where g is the
desired spacing between glyphs, and @’ is the maximum difference
of any ¢ to the mean of ¢ in the entire ensemble. The smaller the
glyphs are, the more consistent the ensemble members are with respect
to the 1-center. A small core indicates few outliers whereas a wider
core indicates more deviation within members [66]. In our system,
variational consistencies are rendered in a sequential colormap using a
single hue.

Inspired by box plots, we visualize the distribution of vertex consis-
tencies at the 1-center .7. For «,- - - , o defined at a vertex v € V of
Z, we compute their minimum, first quartile, median, third quartile,
and maximum and apply graduated glyphs, as shown in Fig. 9(right). In
our system, statistical consistencies are rendered using a miscellaneous
colormap. Finally, the vertex consistency can be extended to edge
consistency, see Appx. B for details.

6 INTERACTIVE VISUALIZATION AND USAGE SCENARIOS

We provide an interactive visualization system that takes as input an
ensemble of leaf-labeled merge trees and outputs a 1-center tree as
their structural average. The system incorporates 1-center computation,
animation and uncertainty visualization; see the supplementary video
for a demo and Appx. A for implementation and Appx. C for design
details. It is implemented using D3.js, Ajax, Flask, and Python.

Its user interface is shown in Fig. 8. The drawing panel allows
the user to draw individual merge trees using node-link diagrams and
assign initial labels to the vertices. Each tree is then added to the
ensemble panel, where ensemble members can be selected, deleted
and edited. The control panel provides various options in computing



a 1-center tree, whereas an animated sequence between an input tree
and the 1-center tree is provided within the animation panel. Various
consistency measures are visualized in the consistency visualization
panel; see Appx. C for design details.

We now describe how a user interacts with our visualization system
under various usage scenarios. Thanks to consistency, a novel measure
of uncertainty for vertices in a tree, our system helps the user perform
tasks that were previously challenging. In particular, we can:

* Use the system as a structural calculator: it takes as input a set
of leaf-labeled merge trees and outputs a 1-center tree as their
structural average.

* Perform label diagnostics and correction to reduce data uncer-
tainty and improve structural consistency.

* Understand structural similarities in a dynamic setting via anima-
tions from an ensemble member to the 1-center tree.

In addition, our system and its underlying algorithms allow us to study
the tradeoff between local and global consistency measures in capturing
structural similarities between ensemble members and their structural
average, as well as to investigate heuristics in labeling strategies by ex-
ploring the tradeoff between intrinsic and extrinsic metrics (see Appx. D
and Appx. E for examples).

6.1 Computing 1-Centers as Structural Averages

Suppose we have a numerical calculator. A typical usage scenario to
obtain an average is to add a set of k input numbers and divide the sum
by k. We want to perform similar operations, not with numbers, but
with complex structures such as merge trees.

As illustrated in Fig. 1, when a user provides as input an ensemble of
six leaf-labeled merge trees in partial agreement (top row on the left),
the system first applies a (re)labeling strategy to update unmatched
labels among the ensemble members while preserving the matched
labels (bottom row on the left). For instance, Tree 2 has three of its
leaves relabeled based on their structural similarities to the pivot Tree
1. The labeling on the 1-center tree (a) shows leaf correspondences
between the input and the output. The system incorporates uncertainty
information on the 1-center tree: variations (b) and distributions (c) in
vertex consistencies are encoded by graduated circular glyphs.

We explore the structural variations of the input ensemble via the
summary plot (d), where all the ensemble members (in this particular
input) have roughly the same interleaving distance to the 1-center (a).
In the variational consistency plot (b), we see that there is a small
variation in the vertex consistency measure around leaf 1 for the 1-
center as indicated by a tiny blue circular glyph, which means that all
six ensemble members are highly consistent in the local neighborhood
of leaf 1. This is also captured by the statistical consistency plot
(c) where the minimum, maximum, and medium consistency values
coincide at leaf 1.

Using our visualization system, the user can perform computations
and uncertainty visualization for trees in full agreement and disagree-
ment in a similar fashion; see Fig. 6. For instance, the variational vertex
consistency plot in Fig. 6(b) shows that all six input trees have almost
no structural variation at leaves 1 and 4, whereas the distribution of
vertex consistencies is much less concentrated at leaves 2 and 3 in the
statistical consistency plot Fig. 6(c), which can be explained in the
sense that leaf 1 and leaf 4 in each input tree all have a common lowest
ancestor at the root with similar height values.

In summary, our system enables us to explore the structural varia-
tions between input trees and their 1-center by incorporating various
means of consistency-based uncertainty visualization; see the supple-
mentary video for a demo.

6.2 Label Diagnostics and Correction

Apart from the default functionality in computing a 1-center, perhaps
more importantly, we could use our interactive tool to perform label
diagnostics and correction to reduce data uncertainty among ensemble
members and improve structural consistency.

We give an example in Fig. 10. The initial input provided by the
user contains an ensemble of six leaf-labeled merge trees in partial

Fig. 10. Label diagnostics and correction. Given an input ensemble of
six partially labeled merge trees, by changing a possibly inaccurate initial
label from 3 (b) to 4 (e) in Tree 4, we reduce the structural variation for
the 1-center, comparing (c) and (f).

agreement. Upon close inspection of the variational consistency plot,
we notice that leaves 3 and 4 in the 1-center have high variations in
their consistency (c). However, changing a (possibly inaccurate) label
in Tree 4 from 3 to 4 greatly reduces the variational consistency of
the 1-center at leaves 2, 3, and 4, comparing (c) with (f). Meanwhile,
such a correction also improves the statistical consistency, as shown
in (g) where summary statistics (minimum, medium, etc.) coincide
at these leaves; see the supplementary video for a demo. However,
such a manual intervention is not practical for large merge trees. We
believe the same strategy could be applied to a simplified merge tree
on a coarser level. For larger trees, we leave it to future work to
automatically identify outliers and suggest rules for modification.

6.3 Animation Along A Geodesic Path

Furthermore, we could understand structural similarities in a dynamic
setting via animations. An animated sequence between an ensemble
member and the 1-center shows how one deforms to the other via a
geodesic (by Theorem 3.2), as well as the evolution of consistency
measures at individual nodes through this process. As shown in Fig. 11,
a 10-step animation between an ensemble member (a) and a 1-center
(b) with different leaf sizes showcases the structural changes between
them; e.g., the creation of new internal vertices along the geodesic. We
can also observe the increase in vertex consistencies (red means high
and green means low consistency), in particular, for vertex 3, along the
same geodesic. See the supplementary video for a demo.

7 APPLICATION TO SCALAR FIELD ENSEMBLES

Our framework can be applied to study the structural variation of an
ensemble of scalar fields. We give two illustrative examples. The
first example, Fig. 12, contains a pair of scalar fields that gives rise
to a pair of merge trees very similar to Fig. 4 in Section 4.1. Each
scalar field is visualized as a 150 x 150 image in (a)-(b). We use the
Topology ToolKit [72] to generate the augmented merge trees in (c)-(d).
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Fig. 11. An animated sequence between an ensemble member (a) and
a 1-center tree (b) via a geodesic.
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Fig. 12. Computing a 1-center for scalar field induced merge trees. On
the left, each row contains from left to right: a scalar field visualized using
a rainbow color map; an augmented merge tree visualized together with
the graph of its corresponding scalar field; and a straight line drawing
of a merge tree in R3. On the right: (g) a straight line drawing of the
1-center tree in R3; (h) a reverse-engineered scalar field that gives rise
to the 1-center tree.

Noncritical points are ignored for the 1-center computation as we need
only leaves and their lowest common ancestors to compute the ultra
matrices. We employ the labeling strategy described in Section 4.3 to
find correspondences between the leaves, by taking into consideration
their geometric embeddings.

The second example in Fig. 13 begins with an ensemble of three
merge trees that arise from scalar fields generated by mixtures of Gaus-
sians. We again apply our algorithm in Section 4.3 to compute the
1-center tree. In this example, merge trees .77, 5, and .73 contain 3, 4,
and 4 leaves, respectively. According to Sec. 4.3, % (or Z3) is selected
as the pivot tree. We use the Euclidean distance between the geometric
embeddings of leaves to assign labels. It is easy to verify that the
computed 1-center tree .7 is indeed of equal distance to the ensemble
members 7], 95, and .73, and therefore represents a structural average
of the scalar field ensemble.

We now focus on uncertainty visualization using our encodings
proposed in Sec. 5 and interactive visualization system in Sec. 6. As
illustrated in Fig. 14, the vertex consistency plot (b) for .% indicates
that leaf 2 has low consistency against the 1-center tree; similarly in

1-Center

Fig. 13. Computing a 1-center for merge trees that arise from scalar
fields generated by mixtures of Gaussians. Left: each row contains a
scalar field visualized as an image, its augmented merge tree, and a
straight line drawing of the corresponding (unaugmented) merge tree in
R3. Right: (j) 1-center tree; and (k) a reverse-engineered scalar field that
gives rise to the 1-center tree.

2,39, 12 379

Fig. 14. (a)-(c): Vertex consistencies for each input tree. Leaf labels are
inferred based on Euclidean distances among geometric embeddings of
vertices. (d) Variational and (e) statistical vertex consistency plot for the
1-center tree.

the variational vertex consistency plot (d), leaf 2 in .7 has the highest
variation whereas leaves 1, 3, and 4 have low variations across ensemble
members. This can be explained as all three input trees share similar
local structures surrounding leaves 1, 3, and 4.

In addition to our proposed uncertainty visualization, we could
further investigate the scalar field that gives rise to a 1-center tree. Such
a scalar field is certainly not unique, and we have reverse-engineered a
candidate by carefully positioning the critical vertices on the 2D domain
with radius basis functions, as shown in Fig. 12(h) and Fig. 13(k),
respectively. It is part of our on-going work to reverse-engineer good
scalar fields that give rise to a given 1-center tree using optimization
techniques with various constraints.

8 CONCLUSION AND DISCUSSION

We provide an interactive visualization system that computes and visu-
alizes a structural average of an ensemble of leaf-labeled merge trees.
We develop a novel measure of uncertainty, referred to as consistency,
via a metric space view of the input trees. This measure is flexible
in allowing a local-global tradeoff in understanding structure varia-
tions. Our results are the first steps toward statistical analysis of as well
as uncertainty visualization for an ensemble of complex topological
descriptors such as merge trees.

There are many future directions. From an algorithmic perspective,
we are interested in computing a 1-center that is robust to outliers, or an
effective algorithm to compute 1-mean/1-median. We also want to have
a systematic investigation of various heuristic labeling algorithms. We
are investigating ways to extend our framework to compute 1-center
contour trees; as a contour tree of a function f can be constructed by
carefully combining merge trees of f and —f. From a visualization
perspective, we will evaluate the effectiveness of various visual encod-
ings for consistency measures, as well as the visualization of 1-center
trees at scale. We will also explore other applications of the animation
between merge trees, e.g., in studying shape morphologies in computer
graphs.

Finally, we hope that our visualization framework could help en-
hance topology- and geometry-based modern tools (e.g., [38,43]) in
neuron morphology analysis for biologists; see Appx. F for an example.
We are also working on helping simulation scientists to take advan-
tage of our framework in detecting abnormalities and outliers within
simulation ensembles.
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