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a b s t r a c t 

Topological data analysis and its main method, persistent homology, provide a toolkit for computing 

topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent 

homology have been established to connect persistent homology with machine learning techniques with 

applicability on shape analysis, recognition and classification. We contribute a kernel construction for 

multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We 

prove that our kernel is stable and efficiently computable, which establishes a theoretical connection 

between topological data analysis and machine learning for multivariate data analysis. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1

 

e  

o  

d  

r  

[  

t  

n  

b  

[  

s  

v

 

[  

c

1  

t  

d  

s  

l  

r

 

s  

n  

p  

s  

a  

y  

s  

t  

p

s  

i

 

c  

d  

s  

b  

s  

o  

[  

R  

f  

i  

[

 

i  

o  

t  

t  

h

2

. Introduction 

Topological data analysis (TDA) is an active area in data sci-

nce with a growing interest and notable successes in a number

f applications in science and engineering [1–8] . TDA extracts in-

epth geometric information in amorphous solids [5] , determines

obust topological properties of evolution from genomic data sets

2] and identifies distinct diabetes subgroups [6] and a new sub-

ype of breast cancer [9] in high-dimensional clinical data sets, to

ame a few. In the context of shape analysis, TDA techniques have

een used in the recognition, classification [10,11] , summarization

12] , and clustering [13] of 2D/3D shapes and surfaces. Oftentimes,

uch techniques capture and highlight structures in data that con-

entional techniques fail to treat [11,13] or reveal properly [5] . 

TDA employs the mathematical notion of simplicial complexes

14] to encode higher order interactions in the system, and at its

ore uses the computational framework of persistent homology [15–

9] to extract multi-scale topological features of the data. In par-

icular, TDA extracts a rich set of topological features from high-

imensional and noisy data sets that complement geometric and

tatistical features, which offers a different perspective for machine

earning. The question is, how can we establish and enrich the theo-

etical connections between TDA and machine learning ? 

Informally, homology was developed to classify topological

paces by examining their topological features such as con-

ected components, tunnels, voids and holes of higher dimensions;
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E-mail addresses: maths@rene-corbet.de (R. Corbet), kerber@tugraz.at 

(M. Kerber), clandi@unimore.it (C. Landi), beiwang@sci.utah.edu (B. Wang). 

e  

[  

t  

c  

ttps://doi.org/10.1016/j.cagx.2019.10 0 0 05 

590-1486/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article u
ersistent homology studies homology of a data set at multiple

cales. Such information is summarized by the persistence diagram ,

 finite multi-set of points in the plane. A persistence diagram

ields a complete description of the topological properties of a data

et, making it an attractive tool to define features of data that take

opology into consideration. Furthermore, a celebrated theorem of

ersistent homology is the stability of persistence diagrams [20] –

mall changes in the data lead to small changes of the correspond-

ng diagrams, making it suitable for robust data analysis. 

However, interfacing persistence diagrams directly with ma-

hine learning poses technical difficulties, because persistence

iagrams contain point sets in the plane that do not have the

tructure of an inner product, which allows length and angle to

e measured. In other words, such diagrams lack a Hilbert space

tructure for kernel-based learning methods such as kernel SVMs

r PCAs [21] . Recent work proposes several variants of feature maps

21–23] that transform persistence diagrams into L 2 -functions over

 

2 . This idea immediately enables the application of topological

eatures for kernel-based machine learning methods as establish-

ng a kernel function implicitly defines a Hilbert space structure

21] . 

A serious limit of standard persistent homology and its initial

nterfacing with machine learning [21–25] is the restriction to

nly a single scale parameter, thereby confining its applicability

o the univariate setting. However, in many real-world applica-

ions, such as data acquisition and geometric modeling, we often

ncounter richer information described by multivariate data sets

26–28] . Consider, for example, climate simulations where mul-

iple physical parameters such as temperature and pressure are

omputed simultaneously; and we are interested in understanding
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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the interplay between these parameters. Consider another example

in multivariate shape analysis, various families of functions carry

information about the geometry of 3D shape objects, such as mesh

density, eccentricity [29] or Heat Kernel Signature [30] ; and we

are interested in creating multivariate signatures of shapes from

such functions. Unlike the univariate setting, very few topological

tools exist for the study of multivariate data [29,31,32] , let alone

the integration of multivariate topological features with machine

learning. 

The active area of multi-parameter persistent homology

[26] studies the extension of persistence to two or more (in-

dependent) scale parameters. A complete discrete invariant such

as the persistence diagram does not exist for more than one

parameter [26] . To gain partial information, it is common to

study slices , that is, one-dimensional affine subspaces where all

parameters are connected by a linear equation. In this paper, we

establish, for the first time, a theoretical connection between topo-

logical features and machine learning algorithms via the kernel

approach for multi-parameter persistent homology. Such a theo-

retical underpinning is necessary for applications in multivariate

data analysis. 

Our contribution. We propose the first kernel construction for

multi-parameter persistent homology. Our kernel is generic , sta-

ble and can be approximated in polynomial time . For simplicity, we

formulate all our results for the case of two parameters, although

they extend to more than two parameters. 

Our input is a data set that is filtered according to two scale pa-

rameters and has a finite description size; we call this a bi-filtration

and postpone its formal definition to Section 2 . Our main contribu-

tion is the definition of a feature map that assigns to a bi-filtration

X a function �X : �(2) → R , where �(2) is a subset of R 

4 . More-

over, �2 
X is integrable over �(2) , effectively including the space of

bi-filtrations into the Hilbert space L 2 ( �(2) ). Therefore, based on

the standard scalar product in L 2 ( �(2) ), a 2-parameter kernel is de-

fined such that for two given bi-filtrations X and Y we have 

〈X , Y〉 � := 

∫ 
�(2) 

�X �Y dμ. (1)

We construct our feature map by interpreting a point of �(2) as a

pair of (distinct) points in R 

2 that define a unique slice. Along this

slice, the data simplifies to a mono-filtration (i.e., a filtration that

depends on a single scale parameter), and we can choose among

a large class of feature maps and kernel constructions of standard,

one-parameter persistence. To make the feature map well-defined,

we restrict our attention to a finite rectangle R . 

Our inclusion into a Hilbert space induces a distance between

bi-filtrations as 

d �(X , Y) := 

√ ∫ 
(�X − �Y ) 2 dμ. (2)

We prove a stability bound, relating this distance measure to the

matching distance and the interleaving distance (see the paragraph

on related work below). We also show that this stability bound is

tight up to constant factors (see Section 4 ). 

Finally, we prove that our kernel construction admits an effi-

cient approximation scheme. Fixing an absolute error bound ε, we

give a polynomial time algorithm in 1/ ε and the size of the bi-

filtrations X and Y to compute a value r such that r ≤ 〈X , Y〉 � ≤
r + ε. On a high level, the algorithm subdivides the domain into

boxes of smaller and smaller width and evaluates the integral of

(1) by lower and upper sums within each subdomain, terminat-

ing the process when the desired accuracy has been achieved. The

technical difficulty lies in the accurate and certifiable approxima-

tion of the variation of the feature map when moving the argu-

ment within a subdomain. 
elated work. Our approach heavily relies on the construction

f stable and efficiently computable feature maps for mono-

ltrations. This line of research was started by Reininghaus et al.

21] , whose approach we discuss in some detail in Section 2 . Alter-

ative kernel constructions appeared in [24,33] . Kernel construc-

ions fit into the general framework of including the space of

ersistence diagrams in a larger space with more favorable proper-

ies. Other examples of this idea are persistent landscapes [22] and

ersistent images [34] , which can be interpreted as kernel con-

tructions as well. Kernels and related variants defined on mono-

ltrations have been used to discriminate and classify shapes and

urfaces [21,25] . An alternative approach comes from the defini-

ion of suitable (polynomial) functions on persistence diagrams to

rrive at a fixed-dimensional vector in R 

d on which machine learn-

ng tasks can be performed; see [35–38] . 

As previously mentioned, a persistence diagram for multi-

arameter persistence does not exist [26] . However, bi-filtrations

till admit meaningful distance measures, which lead to the notion

f closeness of two bi-filtrations. The most prominent such dis-

ance is the interleaving distance [39] , which, however, has recently

een proved to be NP-complete to compute and approximate [40] .

omputationally attractive alternatives are (multi-parameter) bot-

leneck distance [41] and the matching distance [42,43] , which

ompares the persistence diagrams along all slices (appropriately

eighted) and picks the worst discrepancy as the distance of the

i-filtrations. This distance can be approximated up to a precision

using an appropriate subsample of the lines [42] , and also com-

uted exactly in polynomial time [43] . Our approach extends these

orks in the sense that not just a distance, but an inner product on

i-filtrations, is defined with our inclusion into a Hilbert space. In

 similar spirit, the software library RIVET [44] provides a visual-

zation tool to explore bi-filtrations by scanning through the slices.

. Preliminaries 

We introduce the basic topological terminology needed in this

ork. We restrict ourselves to the case of simplicial complexes

s input structures for a clearer geometric intuition of the con-

epts, but our results generalize to more abstract input types (such

s minimal representations of persistence modules) without prob-

ems. 

ono-filtrations. Given a vertex set V , an (abstract) simplex is a

on-empty subset of V , and an (abstract) simplicial complex is a col-

ection of such subsets that is closed under the operation of taking

on-empty subsets. A subcomplex of a simplicial complex X is a

implicial complex Y with Y ⊆X . Fixing a finite simplicial complex

 , a mono-filtration X of X is a map that assigns to each real num-

er α, a subcomplex X (α) of X , with the property that whenever

≤β , X (α) ⊆ X (β) . The size of X is the number of simplices of X .

ince X is finite, X (α) changes at only finitely many places when α
rows continuously from −∞ to + ∞ ; we call these values critical .

ore formally, α is critical if there exists no open neighborhood of

such that the mono-filtration assigns the identical subcomplex

o each value in the neighborhood. For a simplex σ of X , we call

he critical value of σ the infimum over all α for which σ ∈ X (α) .

or simplicity, we assume that this infimum is a minimum, so ev-

ry simplex has a unique critical value wherever it is included in

he mono-filtration. 

i-filtrations. For points in R 

2 , we write ( a , b ) ≤ ( c , d ) if a ≤ c and

 ≤ d . Similarly, we say ( a , b ) < ( c , d ) if a < c and b < d . For a fi-

ite simplicial complex X , a bi-filtration X of X is a map that as-

igns to each point p ∈ R 

2 a subcomplex X (p) of X , such that

henever p ≤ q , X (p) ⊆ X (q ) . Again, a point p = (p 1 , p 2 ) is called

ritical for X if, for any ε > 0, both X (p − ε, p ) and X (p , p − ε)
1 2 1 2 
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Fig. 1. The three black points mark the three critical points of some simplex σ in 

X . The shaded area denotes the positions at which σ is present in the bi-filtration. 

Along the given slice (red line), the dashed lines denote the first position where 

the corresponding critical point “affects” the slice. This position is either the upper- 

vertical, or right-horizontal projection of the critical point onto the slice, depending 

on whether the critical point is below or above the line. For σ , we see that it enters 

the slice at the position marked by the blue point. 
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re not identical to X (p) . Note that unlike in the mono-filtration

ase, the set of critical points might not be finite. We call a bi-

ltration tame if it has only finitely many such critical points. For

 simplex σ , a point p ∈ R 

2 is critical for σ if, for any ε > 0, σ
s neither in X (p 1 − ε, p 2 ) nor in X (p 1 , p 2 − ε) , whereas σ is in

oth X (p 1 + ε, p 2 ) and X (p 1 , p 2 + ε) . Again, for simplicity, we as-

ume that σ ∈ X (p) in this case. A consequence of tameness is

hat each simplex has a finite number of critical points. Therefore,

e can represent a tame bi-filtration of a finite simplicial com-

lex X by specifying the set of critical points for each simplex in

 . The sum of the number of critical points over all simplices of

 is called the size of the bi-filtration. We henceforth assume that

i-filtrations are always represented in this form; in particular, we

ssume tameness throughout this paper. 

A standard example to generate bi-filtrations is by an arbitrary

unction F : X → R 

2 with the property that if τ ⊂σ are two sim-

lices of X , F ( τ ) ≤ F ( σ ). We define the sublevel set X 

F (p) as 

 

F (p) := { σ ∈ X | F (σ ) ≤ p} , 
nd let X 

F denote its corresponding sublevel set bi-filtration . It is

asy to verify that X 

F yields a (tame) bi-filtration and F ( σ ) is the

nique critical value of σ in the bi-filtration. 

lices of a bi-filtration. A bi-filtration X contains an infinite collec-

ion of mono-filtrations. Let L be the set of all non-vertical lines

n R 

2 with positive slope. Fixing any line 	 ∈ L , we observe that

hen traversing this line in positive direction, the subcomplexes

f the bi-filtration are nested in each other. Note that 	 intersects

he anti-diagonal x = −y in a unique base point b . Parameterizing

 as b + λ · a, where a is the (positive) unit direction vector of 	 ,

e obtain the mono-filtration 

 	 (α) := X (b + α · a ) . 

e will refer to this mono-filtration X 	 as a slice of X along 	 (and

ometimes also call 	 itself the slice, abusing notation). The crit-

cal values of a slice can be inferred by the critical points of the

i-filtration in a computationally straightforward way. Instead of a

ormal description, we refer to Fig. 1 for a graphical description.

lso, if the bi-filtration is of size n , each of its slices is of size at

ost n . 

ersistent homology. A mono-filtration X gives rise to a persistence

iagram. Formally, we obtain this diagram by applying the homol-

gy functor to X , yielding a sequence of vector spaces and linear

aps between them, and splitting this sequence into indecompos-

ble parts using representation theory. Instead of rolling out the
ntire theory (which is explained, for instance, in [45] ), we give an

ntuitive description here. 

Persistent homology measures how the topological features of a

ata set evolve when considered across a varying scale parameter

. The most common example involves a point cloud in R 

d , where

onsidering a fixed scale α means replacing the points by balls of

adius α. As α increases, the data set undergoes various topological

onfigurations, starting as a disconnected point cloud for α = 0 and

nding up as a topological ball when α approaches ∞ ; see Fig. 2 (a)

or an example in R 

2 . 

The topological information of this process can be summarized

s a finite multi-set of points in the plane, called the persistence

iagram . Each point of the diagram corresponds to a topological

eature (i.e., connected components, tunnels, voids, etc.), and its

oordinates specify at which scales the feature appears and dis-

ppears in the data. As illustrated in Fig. 2 (a), all five (connected)

omponents are born (i.e., appear) at α = 0 . The green component

ies (i.e., disappears) when it merges with the red component at

= 2 . 5 ; similarly, the orange, blue and pink components die at

cales 3, 3.2 and 3.7, respectively. The red component never dies

s α goes to ∞ . The 0-dimensional persistence diagram is defined

o have one point per component with birth and death value as its

oordinates ( Fig. 2 (c)). The persistence of a feature is then merely

ts distance from the diagonal. While we focus on the components,

he concept generalizes to higher dimensions, such as tunnels (1-

imensional homology) and voids (2-dimensional homology). For

nstance, in Fig. 2 (a), a tunnel appears at α = 4 . 2 and disappears

t α = 5 . 6 , which gives rise to a purple point (4.2, 5.6) in the 1-

imensional persistence diagram ( Fig. 2 (c)). 

From a computational point of view, the nested sequence of

paces formed by unions of balls ( Fig. 2 (a)) can be replaced by

 nested sequence of simplicial complexes by taking their nerves,

hereby forming a mono-filtration of simplicial complexes that cap-

ures the same topological information but has a much smaller

ootprint ( Fig. 2 (b)). 

In the context of shape analysis, we apply persistent homology

o capture the topological information of 2D and 3D shape objects

y employing various types of mono-filtrations. A simple example

s illustrated in Fig. 3 : we extract point clouds sampled from the

oundary of 2D shape objects and compute the persistence dia-

rams using Vietoris-Rips complex filtrations. 

tability of persistent homology. Bottleneck distance represents a

imilarity measure between persistence diagrams. Let D , D 

′ be two

ersistence diagrams. Without loss of generality, we can assume

hat both contain infinitely many copies of the points on the diag-

nal. The bottleneck distance between D and D 

′ is defined as 

 B (D, D 

′ ) := inf 
γ

sup 

x ∈ D 
‖ x − γ (x ) ‖ ∞ 

, (3)

here γ ranges over all bijections from D to D 

′ . We will also

se the notation d B (X , Y) for two mono-filtrations instead of

 B (D (X ) , D (Y)) 

A crucial result for persistent homology is the stability theo-

em proven in [46] and re-stated in our notation as follows. Given

wo functions f, g : X → R whose sublevel sets form two mono-

ltrations of a finite simplicial complex X , the induced persistence

iagrams satisfy 

 B (D f , D g ) ≤ ‖ f − g‖ ∞ 

:= sup 

σ∈ X 
| f (σ ) − g(σ ) | . (4)

eature maps for mono-filtrations. Several feature maps aimed at

he construction of a kernel for mono-filtrations have been pro-

osed in the literature [21–23] . We discuss one example: the

ersistence scale-space kernel [21] assigns to a mono-filtration

 an L 2 -function φX defined on �(1) := 

{
(x 1 , x 2 ) ∈ R 

2 | x 1 < x 2 
}

.
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Fig. 2. Computing persistent homology of a point cloud in R 2 . (a) A nested sequence of topological spaces formed by unions of balls at increasing parameter values. (b) A 

mono-filtration of simplicial complexes that captures the same topological information as in (a). (c) 0-dimensional and 1-dimensional persistence diagrams combined. 
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The main idea behind the definition of φX is to define a sum of

Gaussian peaks, all of the same height and width, with each peak

centered at one finite off-diagonal point of the persistence diagram

D (X ) of X . To make the construction robust against perturbations,

the function has to be equal to 0 across the diagonal (the boundary

of �(1) ). This is achieved by adding negative Gaussian peaks at the

reflections of the off-diagonal points along the diagonal. Writing z̄

for the reflection of a point z , we obtain the formula, 

φX (x ) := 

1 

4 πt 

∑ 

z∈ D (X ) 

e 
‖ x −z‖ 2 

2 
4 t − e 

‖ x −z̄ ‖ 2 
2 

4 t , (5)

where t is the width of the Gaussian, which is a free parameter

of the construction. See Fig. 4 (b) and (c) for an illustration of a

transformation of a persistence diagram to the function φX . The

induced kernel enjoys several stability properties and can be eval-

uated efficiently without explicit construction of the feature map;

see [21] for details. 

More generally, in this paper, we look at the class of all feature

maps that assign to a mono-filtration X a function in L 2 ( �(1) ). For

such a feature map φX , we define the following properties: 

• Absolutely boundedness. There exists a constant v 1 > 0 such

that, for any mono-filtration X of size n and any x ∈ �(1) , 0 ≤
φX (x ) ≤ v 1 · n . 

• Lipschitzianity. There exists a constant v 2 > 0 such that, for

any mono-filtration X of size n and any x , x ′ ∈ �(1) , | φX (x ) −
φX (x ′ ) | ≤ v 2 · n · ‖ x − x ′ ‖ 2 . 

• Internal stability. There exists a constant v 3 > 0 such that, for

any pair of mono-filtrations X , Y of size n and any x ∈ �(1) ,

| φX (x ) − φY (x ) | ≤ v 3 · n · d B (X , Y) . 
• Efficiency. For any x ∈ �(1) , φX (x ) can be computed in polyno-

mial time in the size of X , that is, in O ( n k ) for some k ≥ 0. 

It can be verified easily that the scale-space feature map from

above satisfies all these properties. The same is true, for instance, if

the Gaussian peaks are replaced by linear peaks (that is, replacing

the Gaussian kernel in (5) by a triangle kernel). 

3. A feature map for multi-parameter persistent homology 

Let φ be a feature map (such as the scale-space kernel) that

assigns to a mono-filtration a function in L 2 ( �(1) ). Starting from φ,

we construct a feature map � on the set of all bi-filtrations � that

has values in a Hilbert space. 

The feature map � assigns to a bi-filtration X a function �X :

�(2) → R . We set 

�(2) := 

{
(p, q ) | p ∈ R 

2 , q ∈ R 

2 , p < q 
}

as the set of all pairs of points where the first point is smaller than

the second one. �(2) can be interpreted naturally as a subset of R 

4 ,

but we will usually consider elements of �(2) as pairs of points in

R 

2 . 
Fixing ( p , q ) ∈ �(2) , let 	 denote the unique slice through these

wo points. Along this slice, the bi-filtration gives rise to a mono-

ltration X 	 , and consequently a function φX 	 : �
(1) → R using the

onsidered feature map for mono-filtrations. Moreover, using the

arameterization of the slice 	 as b + λ · a from Section 2 , there ex-

st real values λp , λq such that b + λp a = p and b + λq a = q . Since

 < q and λp < λq , hence ( λp , λq ) ∈ �(1) . We define �X (p, q ) to be

he weighted function value of φX 	 at ( λp , λq ) (see also Fig. 4 ), that

s, 

X (p, q ) := w (p, q ) · φX 	 (λp , λq ) , (6)

here w (p, q ) is a weight function w : �(2) → R defined below. 

The weight function w has two components. First, let R be a

ounded axis-aligned rectangle in R 

2 ; its bottom-left corner coin-

ides with the origin of the coordinate axes. We define w such that

ts weight is 0 if p or q is outside of R . Second, for pairs of points

ithin R × R , we assign a weight depending on the slope of the in-

uced slices. Formally, let 	 be parameterized as b + λ · a as above,

nd recall that a is a unit vector with non-negative coordinates.

rite a = (a 1 , a 2 ) and set ˆ 	 := min { a 1 , a 2 } . Then, we define 

 (p, q ) := χR (p) · χR (q ) · ˆ 	 , 

here χR is the characteristic function of R , mapping a point x to

 if x ∈ R and 0 otherwise. 

The factor ˆ 	 ensures that slices that are close to being horizon-

al or vertical attain less importance in the feature map. The same

eight is assigned to slices in the matching distance [42] . ˆ 	 is not

mportant for obtaining an L 2 -function, but its meaning will be-

ome clear in the stability results of Section 4 . We also remark that

he largest weight is attained for the diagonal slice with a value of

 / 
√ 

2 . Consequently, w is a non-negative function upper bounded

y 1 / 
√ 

2 . 

To summarize, our map � depends on the choice of an

xis-aligned rectangle R and a choice of feature map for mono-

ltrations, which itself might have associated parameters. For in-

tance, using the scale-space feature map requires the choice of

he width t (see (5) ). It is only left to argue that the image of the

eature map � is indeed an L 2 -function. 

heorem 1. If φ is absolutely bounded, then �X is in L 2 ( �(2) ) . 

roof. Let X be a bi-filtration of size n . As mentioned earlier, each

lice X 	 is of a size at most n . By absolute boundedness and the

act that the weight function is upper bounded by 1 √ 

2 
, it follows

hat | �X (p, q ) | ≤ v 1 n √ 

2 
for all ( p , q ). Since the support of �X is com-

act ( R × R ), the integral of �2 
X over �(2) is finite, being absolutely

ounded and compactly supported. �

Note that Theorem 1 remains true even without restrict-

ng the weight function to R , provided we consider a weight
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Fig. 3. The persistence diagrams of 2D shape objects. Black and red points are 0- 

dimensional and 1-dimensional features respectively (ignoring points with ∞ per- 

sistence). 
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a contradiction. �
unction that is square-integrable over �(2) . We skip the (easy)

roof. 

. Stability 

An important and desirable property for a kernel is its stability.

n general, stability means that small perturbations in the input

ata imply small perturbations in the output data. In our setting,

mall changes between multi-filtrations (with respect to matching

istance) should not induce large changes in their corresponding

eature maps (with respect to L 2 distance). 

Adopted to our notation, the matching distance is defined as 

 match (X , Y) = sup 

	 ∈L 

(
ˆ 	 · d B (X 	 , Y 	 ) 

)
, 

here L is the set of non-vertical lines with positive slope [47] . 

heorem 2. Let X and Y be two bi-filtrations. If φ is absolutely

ounded and internally stable, we have 

 �X − �Y ‖ L 2 ≤ C · n · area (R ) · d match (X , Y) , 

or some constant C. 

roof. Absolute boundedness ensures that the left-hand side is

ell-defined by Theorem 1 . Now we use the definition of ‖ · ‖ L 2 
nd the internal stability of φ to obtain 

 �X −�Y ‖ 2 L 2 
= 

∫ 
�(2) 

∣∣w (p, q ) · φX 	 (λp , λq ) −w (p, q ) · φY 	 (λp , λq ) 
∣∣2 

dμ

≤
∫ 

�(2) 

( w (p, q ) · v 3 · n · d B (X 	 , Y 	 ) ) 
2 
dμ

= (v 3 · n ) 2 
∫ 

�(2) 

(w (p, q ) · d B (X 	 , Y 	 )) 
2 dμ

ince w (p, q ) is zero outside R × R , the integral does not change

hen restricted to �(2) ∩ ( R × R ). Within this set, w (p, q ) simpli-

es to ˆ 	 , with 	 the line through p and q . Hence, we can further
ound 

= (v 3 · n ) 2 
∫ 

�(2) ∩ (R ×R ) 

( ̂  	 · d B (X 	 , Y 	 )) 
2 dμ

≤ (v 3 · n ) 2 
∫ 

�(2) ∩ (R ×R ) 

sup 

	 ∈L 

(
ˆ 	 · d B (X 	 , Y 	 ) 

)
︸ ︷︷ ︸ 

= d match (X , Y) 

2 
dμ

= ( v 3 · n · d match (X , Y) ) 
2 

∫ 
�(2) ∩ (R ×R ) 

1 dμ. 

he claimed inequality follows by noting that the final integral is

qual to 1 
4 area (R ) 2 . �

As a corollary, we get the the same stability statement with

espect to interleaving distance instead of matching distance [ 48 ,

hm.1]. Furthermore, we obtain a stability bound for sublevel set

i-filtrations of functions X → R 

2 [ 47 , Thm.4]: 

orollary 3. Let F , G : X → R 

2 be two functions that give rise to

ublevel set bi-filtrations X and Y, respectively. If φ is absolutely

ounded and internally stable, we have 

 �X − �Y ‖ L 2 ≤ C · n · area (R ) · ‖ F − G ‖ ∞ 

, 

or some constant C. 

We remark that the appearance of n in the stability bound is

ot desirable as the bound worsens when the complex size in-

reases (unlike, for instance, the bottleneck stability bound in (4) ,

hich is independent of n ). The factor of n comes from the inter-

al stability property of φ, so we have to strengthen this condition

n φ. However, we show that such an improvement is impossible

or a large class of “reasonable” feature maps. 

For two bi-filtrations X , Y we define X � Y by setting (X �

)(p) := X (p) � Y(p) for all p ∈ R 

2 . A feature map � is additive if

X�Y = �(X ) + �(Y) for all bi-filtrations X , Y . � is called non-

rivial if there is a bi-filtration X such that ‖ �‖ L 2 � = 0 . Additivity

nd non-triviality for feature maps φ on mono-filtrations is de-

ned in the analogous way. Note that, for instance, the scale space

eature map is additive. Moreover, because (X � Y) 	 = X 	 � Y 	 for

very slice 	 , a feature map � is additive if the underlying φ is

dditive. 

For mono-filtrations, no additive, non-trivial feature map φ can

atisfy 

 φX − φY ‖ ≤ C · n 

δ · d B (X , Y) 

ith X , Y mono-filtrations and δ ∈ [0, 1); the proof of this state-

ent is implicit in [ 21 , Thm 3]. With similar ideas, we show that

he same result holds in the multi-parameter case. 

heorem 4. If � is additive and there exists C > 0 and δ ∈ [0, 1) such

hat 

 �X − �Y ‖ L 2 ≤ C · n 

δ · d match (X , Y) 

or all bi-filtrations X and Y, then � is trivial. 

roof. Assume to the contrary that there exists a bi-filtration X 

uch that ‖ �X ‖ L 2 > 0 . Then, writing O for the empty bi-filtration,

y additivity we get ‖ �� n 
i =1 

X − �O ‖ L 2 = n ‖ �X − �O ‖ L 2 > 0 . On

he other hand, d match (� 

n 
i =1 

X , O) = d match (X , O) . Hence, with C and

as in the statement of the theorem, 

‖ �� n 
i =1 

X − �O ‖ L 2 

C · n 

δ · d match (� 

n 
i =1 

X , O) 
= 

n ‖ �X − �O ‖ L 2 

C · n 

δ · d match (X , O) 

= n 

1 −δ ‖ �X − �O ‖ L 2 

C · d match (X , O) 

n →∞ −→ ∞ , 
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Fig. 4. An illustration of the construction of a feature map for multi-parameter persistent homology. (a) Given a bi-filtration X and a point ( p , q ) ∈ �(2) , the line 	 passing 

through them is depicted and the parameter λp and λq computed. (b) The point ( λp , λq ) is embedded in the persistence diagram of the mono-filtration X 	 obtained as the 

slice of X along 	 . (c) The point ( λp , λq ) is assigned the value φX 	 (λp , λq ) via the feature map φ. 

a b

Fig. 5. (a) The two given slices realize the largest and smallest possible slope among all slices traversing the pink box pair. It can be easily seen that the difference of the 

unit vector of the center line to one of the unit vectors of these two lines realizes A for the given box pair. (b) Computing variations for the center slice and a traversing 

slice of a box pair. 
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5. Approximability 

We provide an approximation algorithm to compute the kernel

of two bi-filtrations X and Y up to any absolute error ε > 0. Re-

call that our feature map � depends on the choice of a bounding

box R . In this section, we assume R to be the unit square [0, 1] ×
[0, 1] for simplicity. We prove the following theorem that shows

our kernel construction admits an efficient approximation scheme

that is polynomial in 1/ ε and the size of the bi-filtrations. 

Theorem 5. Assume φ is absolutely bounded, Lipschitz, internally

stable and efficiently computable. Given two bi-filtrations X and Y of

size n and ε > 0, we can compute a number r such that r ≤ 〈X , Y〉 � ≤
r + ε in polynomial time in n and 1/ ε. 

The proof of Theorem 5 will be illustrated in the following para-

graphs, postponing most of the technical details to Appendix A . 

Algorithm. Given two bi-filtrations X and Y of size n and ε > 0,

our goal is to efficiently approximate 〈X , Y〉 � by some number r .

On the highest level, we compute a sequence of approximation in-

tervals (with decreasing lengths) J 1 , J 2 , J 3 , . . . , each containing the

desired kernel value 〈X , Y〉 �. The computation terminates as soon

as we find some J i of width at most ε, in which case we return the

left endpoint as an approximation to r . 

For s ∈ N ( N being the set of natural numbers), we compute J s 
as follows. We split R into 2 s × 2 s congruent squares (each of side

length 2 −s ) which we refer to as boxes . See Fig. 5 (a) for an example

when s = 3 . We call a pair of such boxes a box pair . The integral

from (1) can then be split into a sum of integrals over all 2 4 s box

 

airs. That is, 

X , Y〉 � = 

∫ 
�(2) 

�X �Y dμ = 

∑ 

(B 1 ,B 2 ) 

∫ 
�(2) ∩ (B 1 ×B 2 ) 

�X �Y dμ. 

or each box pair, we compute an approximation interval for the

ntegral, and sum them up using interval arithmetic to obtain J s . 

We first give some (almost trivial) bounds for 〈X , Y〉 �. Let ( B 1 ,

 2 ) be a box pair with centers located at c 1 and c 2 , respectively. By

onstruction, vol (B 1 × B 2 ) = 2 −4 s . By the absolute boundedness of

, we have 

 

�(2) ∩ (B 1 ×B 2 ) 
�X �Y dμ ≤

∫ 
(B 1 ×B 2 ) 

(
1 √ 

2 

v 1 n · 1 √ 

2 

v 1 n 

)
dμ (7)

= 

v 2 1 n 

2 

2 

vol (B 1 × B 2 ) = 

v 2 1 n 

2 

2 

4 s +1 
, (8)

here 1 / 
√ 

2 is the maximal weight. Let U := 

v 2 
1 

n 2 

2 4 s +1 . If c 1 ≤ c 2 , then

e can choose [0, U ] as approximation interval. Otherwise, if c 1 �≤
 2 , then �(2) ∩ (B 1 × B 2 ) = ∅ ; we simply choose [0,0] as approxi-

ation interval. 

We can derive a second lower and upper bound for 〈X , Y〉 �
s follows. We evaluate �X and �Y at the pair of centers ( c 1 ,

 2 ), which is possible due to the efficiency hypothesis of φ. Let

 X = �X (c 1 , c 2 ) and v Y = �Y (c 1 , c 2 ) . Then, we compute varia-

ions δX , δY ≥ 0 relative to the box pair, with the property that,

or any pair ( p , q ) ∈ B 1 × B 2 , �X (p, q ) ∈ [ v X − δX , v X + δX ] , and

Y (p, q ) ∈ [ v Y − δY , v Y + δY ] . In other words, variations describe

ow far the value of �X (or �Y ) deviates from its value at ( c 1 ,

 2 ) within B 1 × B 2 . Combined with the derivations starting in (7) ,

e have for any pair ( p , q ) ∈ B 1 × B 2 , 

max { 0 , (v X − δX )(v Y − δY ) } (9)
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6

 

X

�X (p, q )�Y (p, q ) (10) 

min 

{
v 2 1 n 

2 

2 

, (v X + δX )(v Y + δY ) 

}
. (11) 

By multiplying the bounds obtained in (9) by the volume of
(2) ∩ ( B 1 × B 2 ), we get a lower and an upper bound for the integral

f �X �Y over a box pair ( B 1 , B 2 ). By summing over all possible

ox pairs, the obtained lower and upper bounds are the endpoints

f J s . 

ariations. We are left with computing the variations relative to a

ox pair. For simplicity, we set δ := δX and explain the procedure

nly for X ; the treatment of Y is similar. 

We say that a slice 	 traverses ( B 1 , B 2 ) if it intersects both boxes

n at least one point. One such slice is the center slice 	 c , which

s the slice through c 1 and c 2 . See Fig. 5 (b) for an illustration. We

et D to be the maximal bottleneck distance of the center slice and

very other slice traversing the box pair (to be more precise, of the

ersistence diagrams along the corresponding slices). We set W as

he maximal difference between the weight of the center slice and

ny other slice traversing the box pair, where the weight w is de-

ned as in Section 3 . Write λc 1 for the parameter value of c 1 along

he center slice. For every slice 	 traversing the box pair and any

oint p ∈ 	 ∩ B 1 , we have a value λp , yielding the parameter value

f p along 	 . We define L 1 as the maximal difference of λp and

c 1 among all choices of p and 	 . We define L 2 in the same way

or B 2 and set L := max { L 1 , L 2 }. With these notations, we obtain

emma 6 below. 

emma 6. For all ( p , q ) ∈ B 1 × B 2 , 

 

�X (p, q ) − �X (c 1 , c 2 ) | ≤ v 3 n √ 

2 

D + v 1 nW + v 2 nL. 

roof. Plugging in (6) and using triangle inequality, we obtain 

 

�X (p, q ) − �X (c 1 , c 2 ) | 
= 

∣∣ ˆ 	 φX 	 (λp , λq ) − ˆ 	 c φX 	 c (λc 1 , λc 2 ) 
∣∣

≤ ˆ 	 
∣∣φX 	 (λp , λq ) − φX 	 c (λp , λq ) 

∣∣ + φX 	 c (λp , λq ) 
∣∣ ˆ 	 − ˆ 	 c 

∣∣
+ ̂

 	 c 

∣∣φX 	 c (λp , λq ) − φX 	 c (λc 1 , λc 2 ) 
∣∣

nd bound the three parts separately. The first summand is up-

er bounded by 
v 3 nD √ 

2 
because of internal stability of the feature

ap φ and because ˆ 	 ≤ 1 √ 

2 
for any slice 	 . The second sum-

and is upper bounded by v 1 nW by the absolute boundedness of

. The third summand is bounded by v 2 nL, because ‖ (λp , λq ) −
(λc 1 , λc 2 ) ‖ 2 ≤

√ 

2 ‖ (λp , λq ) − (λc 1 , λc 2 ) ‖ ∞ 

≤ L and by φ being Lips-

hitz, 
∣∣φX 	 c (λp , λq ) − φX 	 c (λc 1 , λc 2 ) 

∣∣ ≤
√ 

2 v 2 nL, and 

ˆ 	 ≤ 1 √ 

2 
. The re-

ult follows. �

Next, we bound D by simple geometric quantities. We use the

ollowing lemma, whose proof appeared in [48] : 

emma 7. [48] Let 	 and 	 ′ be two slices with parameterizations b +
a and b ′ + λa ′ , respectively. Then, the bottleneck distance of the two

ersistence diagrams along these slices is upper bounded by 

2 ‖ a − a ′ ‖ ∞ 

+ ‖ b − b ′ ‖ ∞ 

ˆ 	 ̂  	 ′ 
. 

We define A as the maximal infinity distance of the directional

ector of the center slice 	 c and any other slice 	 traversing the box

air. We define B as the maximal infinity distance of the base point

f 	 c and any other 	 . Finally, we set M as the minimal weight
mong all slices traversing the box pair. Using Lemma 7 , we see

hat 

 ≤ 2 A + B 

M ̂

 	 c 
, 

nd we set 

:= 

v 3 n (2 A + B ) √ 

2 M ̂

 	 c 
+ v 1 nW + v 2 nL. (12) 

t follows from Lemmas 6 and 7 that δ indeed satisfies the required

ariation property. 

We remark that δ might well be equal to ∞ , if the box pair

dmits a traversing slice that is horizontal or vertical, in which

ase the lower and upper bounds derived from the variation

re vacuous. While (12) looks complicated, the values v 1 , v 2 , v 3 
re constants coming from the considered feature map φ, and

ll the remaining values can be computed in constant time using

lementary geometric properties of a box pair. We only explain

he computation of A in Fig. 5 (a) and skip the details of the other

alues. 

nalysis. At this point, we have not made any claim that the algo-

ithm is guaranteed to terminate. However, its correctness follows

t once because J s indeed contains the desired kernel value. More-

ver, handling one box pair has a complexity that is polynomial in

 , because the dominant step is to evaluate �X at the center ( c 1 ,

 2 ). Hence, if the algorithm terminates at iteration s 0 , its complex-

ty is 

s 0 
 

s =1 

O 

(
2 

4 s poly (n ) 
)
. 

his is because in iteration s , 2 4 s box pairs need to be consid-

red. Clearly, the geometric series above is dominated by the last

teration, so the complexity of the method is O (2 4 s 0 poly (n )) . The

ast (and technically most challenging) step is to argue that s 0 =
 ( log n + log 1 ε ) , which implies that the algorithm indeed termi-

ates and its complexity is polynomial in n and 1/ ε. 

To see that we can achieve any desired accuracy for the value of

he kernel, i.e., that the interval width tends to 0, we observe that,

f the two boxes B 1 , B 2 are sufficiently far away and the resolution

 is sufficiently large, the magnitudes A , B , W , and L in (12) are all

mall, because the parameterizations of two slices traversing the

ox pair are similar (see Lemmas 11 –14 in Appendix A ). Moreover,

f every slice traversing the box pair has a sufficiently large weight

i.e., the slice is close to the diagonal), the value M in (12) is suffi-

iently large. These two properties combined imply that the varia-

ion of such a box pair (which we refer to as the good type) tends

o 0 as s goes to ∞ . Hence, the bound based on the variation tends

o the correct value for good box pairs. 

However, no matter how high the resolution, there are always

ad box pairs for which either B 1 , B 2 are close, or are far but close

o horizontal and vertical, and hence yield a very large variation.

or each of these box pairs, the bounds derived from the variation

re vacuous, but we still have the trivial bounds [0, U ] based on the

bsolute boundedness of φ. Moreover, the total volume of these

ad box pairs goes to 0 when s goes to ∞ (see Lemmas 9 and 10

n Appendix A ). So, the contribution of these box pairs tends to 0.

hese two properties complete the proof of Theorem 5 . 

A more careful investigation of our proof shows that the com-

lexity of our algorithm is O (n 80+ k (1 /ε) 40 ) , where k is the effi-

iency constant of the feature map ( Section 2 ). We made little ef-

ort to optimize the exponents in this bound. 

. Conclusions and future developments 

We restate our main results for the case of a multi-filtration

 with d parameters: there is a feature map that associates to X 
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a real-valued function �X whose domain is of dimension 2 d , and

introduces a kernel between a pair of multi-filtrations with a sta-

ble distance function, where the stability bounds depend on the

(2 d -dimensional) volume of a chosen bounding box. The proofs of

these generalized results carry over from the results of this paper.

Moreover, assuming that d is a constant, we claim that the kernel

can be approximated in polynomial time to any constant (with the

polynomial exponent depending on d ). A proof of this statement

requires to adapt the definitions and proofs of Appendix A to the

higher-dimensional case; we omit details. 

Other generalizations include replacing filtrations of simplicial

complexes with persistence modules (with a suitable finiteness

condition), passing to sublevel sets of a larger class of (tame) func-

tions and replacing the scale-space feature map with a more gen-

eral family of single-parameter feature maps. All these generaliza-

tions will be discussed in subsequent work. 

The next step is an efficient implementation of our kernel ap-

proximation algorithm. We have implemented a prototype in C ++ ,

realizing a more adaptive version of the described algorithm. We

have observed rather poor performance due to the sheer number

of box pairs to be considered. Some improvements under consid-

eration are to precompute all combinatorial persistence diagrams

(cf. the barcode templates from [44] ), to refine the search space

adaptively using a quad-tree instead of doubling the resolution and

to use techniques from numerical integration to handle real-world

data sizes. We hope that an efficient implementation of our kernel

will validate the assumption that including more than a single pa-

rameter will attach more information to the data set and improve

the quality of machine learning algorithms using topological fea-

tures. 
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Appendix A. Details on the Proof of Theorem 5 

Overview. Recall that our approximation algorithm produces an

approximation interval J s for s ∈ N by splitting the unit square into

2 s × 2 s boxes. For notational convenience, we write u := 2 −s for the

side length of these boxes. 

We would like to argue that the algorithm terminates after

O ( log n + log 1 ε ) iterations, which means that after that many it-

erations, an interval of width ε has been produced. The following

Lemma 8 gives an equivalent criterion in terms of u and n . 

Lemma 8. Assume that there are constants e 1 , e 2 > 0, such

that width (J s ) = O (n e 1 u e 2 ) . Then, width (J s 0 ) ≤ ε for some s 0 =
O 

(
log n + log 1 ε

)
. 

Proof. Assume that width (J s ) ≤ cn e 1 u e 2 for constants c and s suf-

ficiently large. Since u = 2 −s , a simple calculation shows that
n e 1 u e 2 ≤ ε if and only if s ≥ log c+ e 1 log n + log 1 ε
e 2 

. Hence, choosing 

 := 

⌈
log c + e 1 log n + log 1 ε

e 2 

⌉
= O 

(
log n + log 

1 

ε

)

nsures that width (J s 0 ) ≤ ε. �

In the rest of this section, we will show that width (J s ) =
 (n 2 u 0 . 1 ) . 

Classifying box pairs. For the analysis, we partition the box pairs

onsidered by the algorithm into 4 disjoint classes. We call a box

air ( B 1 , B 2 ): 

• null if c 1 � c 2 , 
• close if c 1 ≤ c 2 such that ‖ c 1 − c 2 ‖ 2 < 

√ 

u , 
• non-diagonal if c 1 ≤ c 2 such that ‖ c 1 − c 2 ‖ 2 ≥ √ 

u and any line 	

that traverses ( B 1 , B 2 ) satisfies ˆ 	 < u 
1 
5 , 

• good if it is of neither of the previous three types. 

According to this notation, the integral from (1) can then be

plit as 

X , Y〉 � = 〈X , Y〉 null + 〈X , Y〉 close + 〈X , Y〉 non −diag + 〈X , Y〉 good , 

here, 〈X , Y〉 null is defined as 
∑ 

(B 1 ,B 2 ) null 

∫ 
�(2) ∩ (B 1 ×B 2 ) 

�X �Y dμ,

nd analogously for the other ones. We let J s , null , J s , close , J s,non −diag ,

 s , good denote the four approximation intervals obtained from our

lgorithm when summing up the contributions of the correspond-

ng box pairs. Then clearly, J s is the sum of these four intervals. For

implicity, we will write J null instead of J s , null when s is fixed, and

ikewise for the other three cases. 

We observe first that the algorithm yields J null = [0 , 0] , so null

ox pairs can simply be ignored. Box pairs that are either close

r non-diagonal are referred to as bad box pairs in Section 5 . We

roceed by showing that the width of J close , J non −diag , and J good are

ll bounded by O ( n 2 u 0.1 ). 

Bad box pairs. We start with bounding the width of J close . Let

 close be the union of all close box pairs. Note that our algorithm

ssigns to each box pair ( B 1 , B 2 ) an interval that is a subset of [0,

 ]. Recall that U = 

v 2 
1 

n 2 

2 4 s +1 . U can be rewritten as 
v 2 

1 
n 2 

2 vol (B 1 × B 2 ) ,

here vol( B 1 × B 2 ) is the 4-dimensional volume of the box pair ( B 1 ,

 2 ). It follows that 

idth (J close ) ≤
v 2 1 n 

2 

2 

vol (B close ) . (A.1)

emma 9. For u ≤ 1 
2 , vol (B close ) ≤ 4 πu . 

roof. Fixed a point p ∈ R , for each point q ∈ R such that (p, q ) ∈
 close and p < q , there exists a unique close box pair ( B 1 , B 2 ) that

ontains ( p , q ). By definition of close box pair, we have that: 

 

p − q ‖ 2 ≤ ‖ 

p − c 1 ‖ 2 + ‖ 

c 1 − c 2 ‖ 2 + ‖ 

c 2 − q ‖ 2 ≤
√ 

u + 

√ 

2 u. 

oreover, for u ≤ 1 
2 , 

√ 

2 u ≤ √ 

u , and so ‖ p − q ‖ 2 ≤ 2 
√ 

u . Equiva-

ently, q belongs to the 2-ball B (p, 2 
√ 

u ) centered at p and of radius
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√ 

u . Then, 

ol (B close ) = 

∫ 
B close 

1 dμ ≤
∫ 

p∈ R 

∫ 
q ∈ B (p, 2 

√ 

u ) 
1 dμ

≤
∫ 

p∈ R 
4 πudμ = 4 πu. 

�

Consequently, combined with (A.1) , we have 

idth (J close ) ≤
4 πv 2 1 n 

2 

2 

u = O (n 

2 u 

0 . 1 ) . 

ote that u < 1 and hence, u ≤ u 0.1 . 

For the width of J non −diag , we use exactly the same reasoning,

aking use of the following Lemma 10 . Let B non-diag be the union

f all non-diagonal box pairs. 

emma 10. For u ≤ 2 −
5 
2 , vol (B non-diag ) ≤

√ 

2 u 
1 
5 . 

roof. Fixed a point p ∈ R , for each point q ∈ R such that (p, q ) ∈
 non-diag and p < q , there exists a unique non-diagonal box pair ( B 1 ,

 2 ) that contains ( p , q ). We have that q lies in: 

• Triangle T 1 ( p ) of vertices p = (p 1 , p 2 ) , (1, p 2 ), and (1 , p 2 + (1 −
p 1 ) 

a 2 
a 1 

) , if the line 	 of maximum slope passing through B 1 × B 2 

is such that ˆ 	 = a 2 where a = (a 1 , a 2 ) is the (positive) unit di-

rection vector of 	 ; 
• Triangle T 2 ( p ) of vertices p = (p 1 , p 2 ) , ( p 1 , 1), and (p 1 + (1 −

p 2 ) 
a 1 
a 2 

, 1) , if the line 	 of minimum slope passing through

B 1 × B 2 is such that ˆ 	 = a 1 where a = (a 1 , a 2 ) is the (positive)

unit direction vector of 	 . 

Let us bound the area of the two triangles. Since the calcula-

ions are analogous, let us focus on T 1 ( p ). By definition, the basis

f T 1 ( p ) is smaller than 1 while its height is bounded by 
a 2 
a 1 

. The

aximum value for the height of T 1 ( p ) is achieved for a 2 = u 
1 
5 . So,

y exploiting the identity a 2 
1 

+ a 2 
2 

= 1 , we have 

a 2 
a 1 

)2 

= 

u 

2 
5 

1 − u 

2 
5 

. 

nder the conditions u ≤ 2 −
5 
2 and 

1 
2 u 

− 2 
5 ≥ 1 we have 

a 2 
a 1 

≤
√ 

2 u 

1 
5 . 

herefore, area (T 1 (p)) ≤
√ 

2 
2 u 

1 
5 . Similarly, area (T 2 (p)) ≤

√ 

2 
2 u 

1 
5 . Fi-

ally, 

ol (B non-diag ) = 

∫ 
B non-diag 

1 dμ

≤
∫ 

p∈ R 

∫ 
q ∈ T 1 (p) ∪ T 2 (p) 

1 dμ

≤
∫ 

p∈ R 

√ 

2 u 

1 
5 dμ ≤

√ 

2 u 

1 
5 . 

�

Good box pairs. For good box pairs, we use the fact that the

ariation of a box pair yields a subinterval of [(v X − δX )(v Y −
Y ) vol (B 1 × B 2 ) , (v X + δx )(v Y + δY ) vol (B 1 × B 2 )] as an approxima-

ion, so the width is bounded by 2(v X δY + v Y δX ) vol (B 1 × B 2 ) . Let

 good be the union of all good box pairs. Since the volumes of all

ood box pairs sum up to at most one, that is, vol (B good ) ≤ 1 , it

ollows that the width of J good is bounded by 2(v X δY + v Y δX ) . By

bsolute boundedness, v X and v Y are in O ( n ), and recall that by

efinition, 

X = 

v 3 n (2 A + B ) √ 

2 M ̂

 	 c 
+ v 1 nW + v 2 nL = O 

(
n 

(
A + B 

M 

2 
+ W + L 

))
ased on the fact that ˆ 	 ≥ M. The same bound holds for δY .
ence, 

idth (J good ) = O 

(
n 

2 

(
A + B 

M 

2 
+ W + L 

))
. 

t remains to show that A + B 
M 

2 + W + L = O (u 0 . 1 ) . Note that M ≥ u 
1 
5 

ecause the box pair is assumed to be good. We will show in the

ext lemmas that A , B , W , and L are all in O ( 
√ 

u ) , proving that the

erm is indeed in O ( u 0.1 ). This completes the proof of the complex-

ty of the algorithm. 

emma 11. Let ( B 1 , B 2 ) be a good box pair. Let a , a ′ be the unit

irection vectors of two lines that pass through the box pair. Then,

 a − a ′ ‖ ∞ 

≤ 2 
√ 

u . In particular, A = O ( 
√ 

u ) . 

roof. Since ( B 1 , B 2 ) is a good box pair, the largest value for

 a − a ′ ‖ ∞ 

is achieved when 	 and 	 ′ correspond to the lines pass-

ng through the box pair( B 1 , B 2 ) with minimum and maximum

lope, respectively. By denoting as c 1 = (c 1 ,x , c 1 ,y ) , c 2 = (c 2 ,x , c 2 ,y )

he centers of B 1 , B 2 , we define 	 to be the line passing through

he points c 1 + (− u 
2 , 

u 
2 ) , c 2 + ( u 2 , − u 

2 ) . Similarly, let us call 	 ′ the

ine passing through the points c 1 + ( u 2 , − u 
2 ) , c 2 + (− u 

2 , 
u 
2 ) . So, the

nit direction vector a of 	 can be expressed as 

 = 

(c 2 + ( u 
2 
, − u 

2 
)) − (c 1 + (− u 

2 
, u 

2 
)) ∥∥(c 2 + ( u 

2 
, − u 

2 
)) − (c 1 + (− u 

2 
, u 

2 
)) 

∥∥
2 

. 

Similarly, the unit direction vector a ′ of 	 ′ is described by 

 

′ = 

(c 2 + (− u 
2 
, u 

2 
)) − (c 1 + ( u 

2 
, − u 

2 
)) ∥∥(c 2 + (− u 

2 
, u 

2 
)) − (c 1 + ( u 

2 
, − u 

2 
)) 

∥∥
2 

. 

Then, by denoting as 〈 · , · 〉 the scalar product, 

 a − a ′ ‖ 

2 
∞ 

≤ ‖ a − a ′ ‖ 

2 
2 = ‖ a ‖ 

2 
2 + ‖ a ′ ‖ 

2 
2 − 2 〈 a, a ′ 〉 = 2(1 − 〈 a, a ′ 〉 ) 

= 2 

(
1 −

〈
c 2 −c 1 + (u, −u ) 

‖ 

c 2 −c 1 + (u, −u ) ‖ 2 

, 
c 2 −c 1 + (−u, u ) 

‖ 

c 2 −c 1 + (−u, u ) ‖ 2 

〉)

= 2 

(
1 − ‖ 

c 2 − c 1 ‖ 

2 
2 − 2 u 

2 

‖ 

c 2 − c 1 + (u, −u ) ‖ 2 ‖ 

c 2 − c 1 + (−u, u ) ‖ 2 

)
. 

y an elementary calculation, one can prove that 

 

c 2 − c 1 + (u, −u ) ‖ 2 ‖ 

c 2 − c 1 + (−u, u ) ‖ 2 

= 

√ 

4 u 

2 
(
u 

2 + 2(c 2 ,x − c 1 ,x )(c 2 ,y − c 1 ,y ) 
)

+ ‖ 

c 2 − c 1 ‖ 

4 
2 . 

hen, 

 a − a ′ ‖ 

2 
∞ 

≤ 2 

⎛ 

⎝ 1 − ‖ 

c 2 − c 1 ‖ 

2 
2 − 2 u 

2 √ 

4 u 

2 
(
u 

2 + 2(c 2 ,x − c 1 ,x )(c 2 ,y − c 1 ,y ) 
)

+ ‖ 

c 2 − c 1 ‖ 

4 
2 

⎞ 

⎠ 

= 2 

⎛ 

⎝ 1 + 

2 u 

2 − ‖ 

c 2 − c 1 ‖ 

2 
2 √ 

4 u 

2 
(
u 

2 + 2(c 2 ,x − c 1 ,x )(c 2 ,y − c 1 ,y ) 
)

+ ‖ 

c 2 − c 1 ‖ 

4 
2 

⎞ 

⎠ .

Since ( B 1 , B 2 ) is a good box pair, ‖ c 2 − c 1 ‖ 2 ≥
√ 

u . So, 

 a − a ′ ‖ 

2 
∞ 

≤ 2 

⎛ 

⎝ 1 + 

2 u − 1 √ 

4 

(
u 

2 + 2(c 2 ,x − c 1 ,x )(c 2 ,y − c 1 ,y ) 
)

+ 1 

⎞ 

⎠ . 

ince 

√ 

4 
(
u 2 + 2(c 2 ,x − c 1 ,x )(c 2 ,y − c 1 ,y ) 

)
+ 1 ≥ 1 , we have that 

 a − a ′ ‖ 

2 
∞ 

≤ 2(1 + 2 u − 1) = 4 u. 
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Therefore, 

‖ a − a ′ ‖ ∞ 

≤ 2 

√ 

u . 

�

Lemma 12. Let ( B 1 , B 2 ) be a good box pair. Let 	 = aλ + b, 	 ′ =
a ′ λ + b ′ be two lines that pass through the box pair such that a , a ′ are

unit direction vectors and b , b ′ are the intersection points with the di-

agonal of the second and the fourth quadrant. Then ‖ b − b ′ ‖ ∞ 

≤ 4 
√ 

u .

In particular, B = O ( 
√ 

u ) . 

Proof. Since ( B 1 , B 2 ) is a good box pair, the largest value for ‖ b −
b ′ ‖ ∞ 

is achieved when 	 and 	 ′ correspond to the lines passing

through the box pair( B 1 , B 2 ) with minimum and maximum slope,

respectively. By denoting the centers of B 1 and B 2 by c 1 and c 2 , we

define 	 to be the line passing through the points c 1 + (− u 
2 , 

u 
2 ) ,

c 2 + ( u 2 , − u 
2 ) . Similarly, let us call 	 ′ the line passing through the

points c 1 + ( u 2 , − u 
2 ) , c 2 + (− u 

2 , 
u 
2 ) . So, 	 can be expressed as 

(x, y ) = 

c 2 + ( u 
2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) ∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

t + c 1 + 

(
−u 

2 

, 
u 

2 

)
, 

where t is a parameter running on R . By intersecting 	 with the

line y = −x, we get: 

c 2 ,x + 

u 
2 

− c 1 ,x + 

u 
2 ∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

t + c 1 ,x − u 

2 

= 

−c 2 ,y + 

u 
2 

+ c 1 ,y + 

u 
2 ∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

t − c 1 ,y − u 

2 

, 

which can be written as 

c 1 ,x + c 1 ,y = 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y ∥∥c 2 + ( u 
2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

t, 

letting us deduce that 

 = 

(c 1 ,x + c 1 ,y ) 
∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 
. 

So, by replacing t in the equation of 	 we retrieve b : 

b = 

c 2 + ( u 
2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) ∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

(c 1 ,x + c 1 ,y ) 
∥∥c 2 + ( u 

2 
, − u 

2 
) − c 1 − (− u 

2 
, u 

2 
) 
∥∥

2 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 
+ c 1 + 

(
−u 

2 

, 
u 

2 

)

= 

(u, −u )(c 1 ,x + c 1 ,y ) 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 
+ 

(c 2 − c 1 )(c 1 ,x + c 1 ,y ) 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 

+ c 1 + 

(
−u 

2 

, 
u 

2 

)
. 

Similarly, 

b ′ = 

(−u, u )(c 1 ,x + c 1 ,y ) 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 
+ 

(c 2 − c 1 )(c 1 ,x + c 1 ,y ) 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 

+ c 1 + 

(
u 

2 

, −u 

2 

)
. 

So, ∥∥b − b ′ 
∥∥

∞ 

= 

∥∥∥∥
(

2 

c 1 ,x + c 1 ,y 

c 1 ,x + c 1 ,y − c 2 ,x − c 2 ,y 
− 1 

)
(u, −u ) 

∥∥∥∥
∞ 

= 

∣∣∣ c 1 ,x + c 1 ,y + c 2 ,x + c 2 ,y 

c 2 ,x + c 2 ,y − c 1 ,x − c 1 ,y 

∣∣∣‖ 

(u, −u ) ‖ ∞ 

≤ 4 r 

| c 2 ,x + c 2 ,y − c 1 ,x − c 1 ,y | u. 

Since ( B 1 , B 2 ) is a good box pair, 

c 2 ,x + c 2 ,y − c 1 ,x − c 1 ,y = ‖ 

c 2 − c 1 ‖ 1 ≥ ‖ 

c 2 − c 1 ‖ 2 ≥
√ 

u . 
inally, 

b − b ′ 
∥∥

∞ 

≤ 4 √ 

u 

u = 4 

√ 

u . 

�

emma 13. Let ( B 1 , B 2 ) be a good box pair. Let ˆ 	 , ˆ 	 ′ be the weights of

wo lines 	 and 	 ′ that pass through the box pair. Then | ̂  	 − ˆ 	 ′ | ≤ 4 
√ 

u .

n particular, W = O ( 
√ 

u ) . 

roof. If ˆ 	 = a 1 and 

ˆ 	 ′ = a ′ 
1 
, then, by applying Lemma 11 , 

 ̂

 	 − ˆ 	 ′ | = | a 1 − a ′ 1 | ≤
∥∥a − a ′ 

∥∥
∞ 

≤ 2 

√ 

u . 

n the other hand, if ˆ 	 = a 1 and 

ˆ 	 ′ = a ′ 
2 
, then there exists a line 	 ′′

assing through the box pair ( B 1 , B 2 ) such that a ′′ = ( 
√ 

2 
2 , 

√ 

2 
2 ) . By

pplying twice Lemma 11 , 

 ̂

 	 − ˆ 	 ′ | = | a 1 − a ′ 2 | ≤ | a 1 −
√ 

2 

2 

| + | 
√ 

2 

2 

− a ′ 2 | 
= | a 1 − a ′′ 1 | + | a ′′ 2 − a ′ 2 | ≤

∥∥a − a ′′ 
∥∥

∞ 

+ 

∥∥a ′′ − a ′ 
∥∥

∞ 

≤ 4 

√ 

u . 

he cases ˆ 	 = a 2 , ˆ 	 ′ = a ′ 
2 

and 

ˆ 	 = a 2 , ˆ 	 ′ = a ′ 
1 

can be treated analo-

ously to the previous ones. �

emma 14. Let ( p , q ), ( p ′ , q ′ ) be two points in a good box pair

 B 1 , B 2 ) and let 	 , 	 ′ be the lines passing through p , q and p ′ , q ′ ,
espectively. In accordance with the usual parametrization, we have

hat | λp − λp ′ | ≤
√ 

2 u + 4 
√ 

u and | λq − λq ′ | ≤
√ 

2 u + 4 
√ 

u . As a con-

equence, L = O ( 
√ 

u ) . 

roof. Thanks to the definition of λp , the triangular inequality and

emma 12 , we have that: 

p = ‖ 

p − b ‖ 2 ≤
∥∥p − p ′ 

∥∥
2 

+ 

∥∥p ′ − b ′ 
∥∥

2 
+ 

∥∥b ′ − b 
∥∥

2 

≤
√ 

2 u + λp ′ + 4 

√ 

u . 

o, we have that λp − λp ′ ≤
√ 

2 u + 4 
√ 

u , and, similarly, λp ′ − λp ≤
 

2 u + 4 
√ 

u . Then, 

 λp − λp ′ | ≤
√ 

2 u + 4 

√ 

u . 

nalogously, it can be proven that 

 λq − λq ′ | ≤
√ 

2 u + 4 

√ 

u . 

�
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