
Visual Detection of Structural Changes in Time-Varying Graphs Using
Persistent Homology

Mustafa Hajij*
University of South Florida

Bei Wang†

University of Utah
Carlos Scheidegger‡

University of Arizona
Paul Rosen§

University of South Florida

2:42	AM	
to	3:42	AM

A B

C D E F

G

3:42	PM	
to	4:42	PM

5:36	AM	
to	6:36	AM

10:18	AM	to	
11:18	AM

1:54	PM	
to	2:54	PM

7:30	AM	
to	8:30	AM

11:54	AM	to	
12:54	PM

Time	of	Day

No
de
	C
la
ss

MP*1
MP*2
PC
PC*
PSI*

m
idnight

6pm

noon

6am

m
idnight

Figure 1: A timeline showing the first Monday of the High School Communication Network dataset. The timeline is generated by
comparing the commute-time 0-dimensional homological features of the time-varying network using the bottleneck distance. Here,
the 0-dimensional homological features capture cluster-like behaviors in the data at multiple scales. The timeline differentiates
periods of highly connected behaviors, such as instances C, D, E, and F, from periods of low or no activity, such as A, B, or G.

ABSTRACT

Topological data analysis is an emerging area in exploratory data
analysis and data mining. Its main tool, persistent homology, has
become a popular technique to study the structure of complex, high-
dimensional data. In this paper, we propose a novel method using
persistent homology to quantify structural changes in time-varying
graphs. Specifically, we transform each instance of the time-varying
graph into a metric space, extract topological features using persis-
tent homology, and compare those features over time. We provide
a visualization that assists in time-varying graph exploration and
helps to identify patterns of behavior within the data. To validate
our approach, we conduct several case studies on real-world datasets
and show how our method can find cyclic patterns, deviations from
those patterns, and one-time events in time-varying graphs. We also
examine whether a persistence-based similarity measure satisfies a
set of well-established, desirable properties for graph metrics.

Keywords: Topological data analysis, time-varying graph, persis-
tent homology, graph visualization

1 INTRODUCTION

Time-varying graphs are ubiquitous across many disciplines, yet
difficult to analyze, making them a natural target for visualization
– a good visual representation of a time-varying graph will present
its structure and structural changes quickly and clearly, to enable
further analysis and exploration.

*e-mail: mhajij@usf.edu
†e-mail: beiwang@sci.utah.edu
‡e-mail: cscheid@email.arizona.edu
§e-mail: prosen@usf.edu

A major development in graph drawing has been the observation
that using derived information can retain structure in static graph
visualizations. For example, the dot layout uses node ranks to
perform hierarchical drawings [31]; the neato algorithm employs
graph distances within statistical multi-dimensional scaling [30];
and Noack’s energy model utilizes approximated clustering [46].

In this paper, we take the first steps toward using topological
features – captured by persistent homology – with the design goal of
detecting potentially important structural changes in time-varying
graph data. By topological features, we do not mean the configura-
tion of nodes and edges alone, but instead the 0- and 1-dimensional
homology groups of a metric space that describe its connected com-
ponents and tunnels, respectively.

This definition allows us to quantify structural elements within
time-varying graphs to identify behavior patterns in the data. Per-
sistent homology quantifies individual topological features (events)
in the graph according to their significance (or persistence). The
set of all features, encoded by the persistence diagram, can be seen
as a fingerprint for the graph. Using this fingerprint, the most topo-
logically important structures of two graphs can be compared in a
manner that is robust to small perturbations in the data.

Well-understood techniques in topological data analysis typically
focus on the qualitative study of point cloud data under the metric
space setting. In order to study graph data, our approach is to
embed the graph in a metric space, where topological techniques
can be applied. In other words, the notion of metric space acts as an
organizational principle [9] in interpreting the graph data.

Our approach, as seen Figure 2, can be summarized as follows.
The input of our pipeline is a time-varying graph, which is an ordered
sequence of graph instances. First, each instance is embedded into

…

…

…

Section 3.2Section 3.1 Section 3.3 & 3.4Input

Figure 2: The pipeline of our approach. An ordered sequence of graphs representing a time-varying graph is given as an input. Each graph
instance is individually embedded into a metric space (Section 3.1). The topological features of each (metric-space-embedded) graph instance
are extracted by computing persistent homology of its corresponding Rips filtration; the topological features are encoded by persistence
diagrams and visualized as barcodes (Section 3.2). Finally, persistence diagrams are compared and the structural changes among the graph
instances are visualized (Sections 3.3 and 3.4).

a metric space. Second, topological features of each instance are
extracted, using persistent homology, and encoded within persistence
diagrams. Third, instances are compared by calculating the distance
between persistence diagrams and projecting them using classical
multi-dimensional scaling (MDS) [6].

The data is then visualized using an interactive timeline and node-
link diagrams, as shown in Figure 1. The horizontal axis is used to
represent time, while the vertical location is the first component of
MDS; in other words, it captures the dissimilarities among instances.
Graph instances from selected timeframes are drawn using a force-
directed layout to demonstrate how the approach highlights different
structures in the graph. The contributions of our paper are:

• A novel pipeline for detecting structural changes in time-
varying graphs that uses persistent homology to summarize
important structures, as opposed to directly comparing nodes
and edges.

• An interface that uses conventional visualization approaches
adapted to the design goal of highlighting structural changes.

• Two case studies of time-varying graphs showing how our ap-
proach can find cyclic patterns, deviations from those patterns,
and unique one-time events in the graphs.

• A study of the suitability of using persistence-based similar-
ity measure for detecting structural changes in time-varying
graphs.

2 RELATED WORK

Static Graph Analysis and Visualization. We provide a brief
overview here, see [53] for a survey.

The first automated technique for node-link diagrams is Tutte’s
barycentric coordinate embedding [49], followed by linear program-
ming [31], force-directed/mass-spring embeddings [28, 36], embed-
dings of the graph metric [30], and techniques using linear-algebraic
properties of the connectivity structures (especially, the graph Lapla-
cian and its associated eigenspace) [39, 40].

Most graph visualization systems, including Gephi [3],
NodeXL [34], and Graphviz [25], use variations on node-link visu-
alizations to display graphs. For dense graphs, edge bundling can
reduce visual clutter by routing graph edges to the same portion
of the screen [35]. In terms of quality, divided edge bundling [48]
produces high-quality results, while hierarchical edge bundling [29]
scales to millions of edges with slightly lower quality. Because
these quality and runtime trade-offs are so characteristic of node-
link diagram visualizations, whether or not this class of diagrams
can effectively unlock the insights hidden inside the structure of
large networks remains an open research question.

Other visual metaphors have been proposed to reduce clutter,
ranging from relatively conservative proposals [20,21] to variants of
matrix diagrams [18] and abstract displays of graph statistics [38].

Time-Varying Graph Analysis. The problem we address is
closely related to the problem of measuring similarity or dissimilarly
between graphs without knowing node correspondences. Comparing
between graphs up to isomorphism is hard [1]. For this reason, many
notions of graph similarities have been proposed [4,47]. These meth-
ods rely on mapping the graphs into a feature space and then defining
distances on that space. Other approaches use kernel functions to
build a similarity measures on graphs [43, 51]. While large por-
tions of the literature on graph similarity focus on graph comparison
with known node correspondences, there are attempts to tackle the
problem where node correspondence is unknown [51, 52]. Distance
functions on the space of graphs have also been studied [12].

Time-Varying Graph Visualization. Beck et al. [5] provide
a detailed survey of dynamic graph visualization. They divide the
techniques into two major categories, animation and timelines. Our
approach falls into the latter category. Animation approaches, such
as the work of Misue et al. [44], vary the graph representation over
time, while making the graph as legible as possible at any given
instance. Timeline approaches, such as the work of Greilich et
al. [33], use a non-animated, often spatially oriented, visual channel
to show the changes in the graph over time. Timeline approaches
seem to provide a better overview of the data as it tries to capture the
entire graph sequence in a single image. These approaches include
multiple techniques such as node-link-based methods [37], matrix-
based approaches [8] and feature vector-based method [50]. For
more references see also [53].

Topological Data Analysis of Networks. Persistent homology
is becoming an emerging tool in studying complex networks [19,22]
including collaboration [2, 10] and brain networks [11, 15]. To the
best of our knowledge, our approach is the first to connect topo-
logical techniques with the visualization design of (time-varying)
graphs.

3 APPROACH

Our approach uses persistent homology to identify and compare
features in a time-varying graph. Our visual design goal is to identify
high-level structural changes in the graph. To do this, consider a time-
varying graph G = {G0, ...,Gn} that contains an ordered sequence
of static graph instances Gi = (Vi,Ei).

We are interested in quantifying and visualizing structural
changes of G . Our analysis pipeline (see Figure 2) is described

below, and we provide a detailed description of each step in the
subsequent sections.

1. Associate each instance Gi with a metric space representation.
This yields a symmetric distance matrix di, where di(x,y) mea-
sures the (shortest-path or commute-time) distance between
vertices x and y in Gi (Section 3.1).

2. Extract topological features of Gi by constructing a filtration
Fi from its distance matrix di and computing its corresponding
p-dimensional persistence diagrams PDp(Fi) for p ∈ {0,1}
(Section 3.2).

3. Capture the structural differences between Gi and G j by com-
puting the bottleneck or Wasserstein distance between their cor-
responding persistence diagrams PDp(Fi) and PDp(Fj) (Sec-
tion 3.3).

4. Visualize the structural differences among the instances of G
(Section 3.4).

3.1 Graphs and Metric Space Representations
Suppose an instance Gi is represented as a weighted, undirected
graph with a vertex set V and an edge set E equipped with a positive
edge weight w. We associate each graph instance Gi with a metric
space representation, which yields a symmetric distance matrix di.

Consider the positive edge weight as the length of an edge. Then a
natural metric dsp is obtained on Gi, where for every pair of vertices
x and y in Gi, the distance dsp(x,y) is the length of the shortest path
between them. This is the classic shortest-path distance, which is
typically computed with Dijkstra’s algorithm [17] and its variations.

Alternatively, other distance metrics based on the graph Laplacian
[14], such as commute-time distance, discrete biharmonic distance,
and diffusion distance, can be considered. For instance, the commute-
time distance is defined as [27]

d2
ct(x,y) =

|V |−1

∑
i=1

1
λi
(φi(x)−φi(y))2. (1)

Here {λi}
|V |−1
i=0 and {φ}|V |−1

i=0 are the generalized eigenvalues and
eigenvectors of the graph Laplacian of Gi, respectively [13]. In prac-
tice, we approximate the summations of Equation (1) by considering
the first few nonzero eigenvectors, since the higher eigenvectors do
not contribute significantly.

These distance metrics are illustrated in Figure 3, which shows
the distance from a point source to all other locations on the surface.
We see the commute-time distance produces a smoother gradient
than the shortest-path distance.

(a) Shortest-path Distance (b) Commute-time Distance

Figure 3: The (a) shortest-path and (b) commute-time distance
measured from a source point on a 2-dimensional surface embedded
in R3. Blue indicates the regions closest to the source.

3.2 Extracting Topological Features
To extract topological features from each graph instance, we apply
persistent homology to its metric space representation. To describe
our process, we first briefly review persistent homology. We then
describe persistence diagrams, which encode topological features
of a given graph instance. For more background on persistence
homology, see [23] and the references within.

Topological features. Homology deals with topological fea-
tures of a space. Given a topological space X, the 0-, 1- and
2-dimensional homology groups, denoted respectively as H0(X),
H1(X) and H2(X), correspond intuitively to (connected) compo-
nents, tunnels and voids of X.

In our context, we care about the 0- and 1-dimensional topological
features of a graph instance Gi that, roughly speaking, correspond to
(connected) components and tunnels formed by points in its metric
space representation.

Persistent homology. In practice, there might not exist a
unique scale that captures topological structures of the data. In-
stead, we adapt a multi-scale notion of homology, called persistent
homology, a main tool in topological data analysis, to describe the
topological features of a space at different spatial resolutions.

Persistent homology typically starts with a finite set of points in
a metric space. In our setting, each graph instance Gi is associated
with a metric space, where vertices in Gi form a finite set of points
S, and di encodes the pairwise distance among points in S.

We then apply a geometric construction, such as a Rips complex,
on the point set S, that describes the combinatorial structure among
the points. For a real number r > 0, a Rips complex, denoted as R(r),
is formed by considering a set of balls of diameter r centered at
points in S. A 1-simplex (an edge) is formed between two points in
S if and only if their balls intersect (see Figure 4 left). A 2-simplex
(a triangular face) is formed among three points if the balls intersect
between every pair of points (see Figure 4 right).

Figure 4: Edges (left) and triangles (right) in a Rips complex.

Given a finite point set S from Gi, continuously increasing the
diameter forms a 1-parameter family of nested unions of balls; and
correspondingly we obtain a 1-parameter family of nested Rips
complexes, referred to as a Rips filtration. Let 0 = r0 ≤ r1 ≤ r2 ≤
·· · ≤ rm denote a finite sequence of increasing diameter. The Rips
filtration Fi (of Gi) is a sequence of Rips complexes connected
by inclusions, R(r0)→ R(r1)→ R(r2)→ ··· → R(rm). Figure 5
shows a Rips filtration defined on an example graph equipped with a
shortest-path metric. Applying homology to a Rips filtration, the ho-
mology groups are connected from left to right by homomorphisms
induced by inclusions, H(R(r0))→H(R(r1))→H(R(r2))→ ··· →
H(R(rm)).

Topological features appear and disappear as the diameter in-
creases: when a topological feature appears, that is, a component
(i.e. a cluster) or a tunnel forms, this is called a birth event; when a
topological feature disappears, that is, two components merge into
one or a tunnel is filled, it is called a death event. Each topological
feature is represented by a single bar, with the position of left and
right sides representing the birth and death times, respectively. The
persistence of a topological feature is the time difference between
the death and the birth event. For example, at r = 0.25, there are six
components alive, one per vertex, all of which are born at r = 0. At
r = 0.5, the two components in the upper right combine into one.
This causes the death of one component, represented by a barcode
of length 0.5 on the right.

Persistence Diagrams. Topological features of a graph in-
stance and their persistence are recorded by pairing their birth and
the death events as a multi-set of points in the plane, called the
persistence diagram (see [24]).

Each topological features is represented as a point (u,v), where
u is the birth time, and v is the death time of the feature. Certain

A
B

C

D

E
F

5

2

1.2

3.3
2.5 0.5

1.2

0.0 1.2 4.5 5.0 1.2 3.7
0.0 5.3 5.8 2.0 4.5

	0.0 0.5 3.3 5.8
0.0 3.8 6.3

0.0 2.5
0.0

r=0.5

0.5

r=0.25

0.5

2.5

1.2
1.2

r=3.3r=2.5

0.5

2.5

1.2
1.2

3.3

r=1.2

0.5
1.2
1.2

Figure 5: Constructing a Rips filtration from a distance matrix on a
graph. The numbers above each Rips complex indicate the diameter
at which the complex is computed. The corresponding 0-persistence
diagrams are shown in the gray box to the right of each complex.

features may “live” forever; in that case, they are assigned a death
time of ∞. Therefore, a persistence diagram contains a multi-set of
points in the extended plane (i.e., (R∪±∞)2). For technical reasons,
we add the points on the diagonal to the diagram, each with infi-
nite multiplicity. The persistence of the pair (u,v) is simply |v−u|.
Features with higher persistence carry more significant topological
information. Features with low persistence are typically considered
noise. A persistence diagram can be visualized as persistence bar-
codes [32] (see Figures 2 and 5), where each bar starts at time u and
ends at time v. We are interested in 0- and 1-dimensional topological
features, so we consider the 0- and 1- persistence diagrams, denoted
as PD0(Fi) and PD1(Fi), respectively.

3.3 Comparing Sets of Topological Features
A persistence diagram can be thought of as a summary of topological
features of a graph instance Gi. To quantify the structural difference
between two instances Gi and G j, we compute the bottleneck and
Wasserstein distances between their persistence diagrams.

Given two persistence diagrams X and Y , let η be a bijection
between points in the diagram. The bottleneck distance [24] is
defined as

W∞(X ,Y) = inf
η :X→Y

sup
x∈X
‖x−η(x)‖

∞
. (2)

The Wasserstein distance is

Wq(X ,Y) =
[

inf
η :X→Y

Σx∈X ‖x−η(x)‖q
∞

]1/q
, (3)

for any positive real number q; in our setting, q = 2.
The set of points in the persistence diagram can be considered as

a feature vector, where the feature space consists of all persistence
diagrams for the time-varying graph G. Given all pairwise distances
between persistence diagrams, classical MDS is then used to reduce
the dimensionality of the feature vectors for visualization, and to
identify the instances where topologically interesting events occur.

3.4 Visualization
The design goal of our interactive visualization tool is to provide
insights about variation in the structural properties of time-varying

graphs. In this way, we hope to identify time periods of uniform
behavior (low variation) and outlier behavior (instances of high
variation). Our visualization tool provides a number of capabilities
to support this form of investigation.

Timeline. The timeline view uses the horizontal axis to rep-
resent time and the vertical axis to represent the first dimension
returned by applying classical MDS to the space of persistence dia-
grams. This in essence highlights the dissimilarity between graph
instances. Each point on the timeline represents a single instance
of the time-varying graph. The points are colored using cyclic
colormaps, such as the time-of-day colormap of Figure 1 or the
day-of-the-week colormap of Figure 11.

Cyclic Patterns. Two techniques are available for showing
repetitive patterns in the data, both being variations of the timeline.
The first technique simply splits the data based upon a user-specified
period length. Each period is colored uniquely. Figure 7 shows
an example of this. For the second technique, the time periods are
clustered based upon their `2-norm using k-means clustering with a
user-specified k, see Figure 12 for an example where the points are
colored by day of the week.

Graph Visualization. For investigating the behavior of specific
graph instances, the instances are displayed by two visualization
mechanisms. The first is a node-link diagram created using a force-
directed layout. If categorical information is available (such as

0.5 1.2

2.5

3.3

2.0

5

2

1.2

3.3
2.5 0.5

3
5

2

1.2

2.5 0.5

0.0 1.2 4.5 5.0 1.2 3.7
0.0 5.3 5.8 2.0 4.5

0.0 0.5 3.3 5.8
0.0 3.8 6.3

0.0 2.5
0.0

0.0 1.2 4.2 4.7 3.2 5.7
0.0 3.0 3.5 2.0 4.5

0.0 0.5 3.3 5.8
0.0 3.8 6.3

0.0 2.5
0.0

0.5
1.2

2.0
2.5

0.5

2.5

1.2
0.5

1.2
2.0

0.0 1.2 5.0 5.5 3.2	 	5.7
0.0 6.2 6.7 2.0	 	4.5

0.0 0.5 8.7 10.7
0.0 9.2 11.2

0.0 	2.5
	0.0

A
B

C

D
E

F

5

2

1.2

3.3
2.5 0.5

1.2

0.5 1.2

2.52.0

0.5 1.2

2.52.0

3.3 5.03.35.05.0

1.2

3.3
2.5

5.03.3

G0 G1 G2

Bottleneck	Distance Wasserstein	Distance

G1 G2

G0 0.8 1.7

G1 1.7

G1 G2

G0 0.64 3.53

G1 2.89

Figure 6: From left to right, 1st row: three weighted graph instances
G0, G1 and G2 representing a time-varying graph. 2nd row: each
graph instance is embedded into a metric space, represented by
a shortest-path distance matrix. 3rd row shows the filtrations in
which topologically significant events occur, resulting in persistence
barcodes in the 4th row. 5th row: the persistence diagrams are
compared pairwise using bottleneck and Wasserstein distance.

Figure 7: Timeline comparison for the seven weekdays of the High School Communications dataset together with graph instances along these
timelines. These graph instances validate the different levels of communication visible using our approach.

in Figure 1), the nodes are colored by those categories. For 1-
dimensional topological features, nodes can be parameterized around
the tunnel using a 1-dimensional cyclic parameterization [16, 54].
An example of this is seen in Figure 9. In other cases, nodes receive
a fixed color. The second mechanism visualizes the persistence
diagram for a given graph instance using its barcodes (see fourth row
of Figure 6). The barcode is a variation on a bar chart that represents
the birth and death of all topological features in the graph.

3.5 Example
We provide an illustrative example of our pipeline in Figure 6.

In step 1 (1st row), a time-varying graph G is given as a sequence
of graph instances, where each instance is a connected, weighted
graph. In step 2 (2nd row), each graph instance is embedded in
a metric space by calculating a distance matrix using the shortest-
path metric. In step 3 (3rd row), each distance matrix is used to
compute a series of filtrations. In reality, additional filtrations are
created, but we show only those that produce 0-dimensional features.
In step 4 (4th row), the 0-dimensional persistence diagrams of the
filtrations are extracted and shown as barcodes. The final step (5th
row) consists of computing the distances between these diagrams
using bottleneck and Wasserstein distances.

The bottleneck or Wasserstein distance as a persistence-based
similarity measure helps quantify topologically similarity between a
pair of instances. For example, under both distances, G0 and G1 are
much closer to one another than are the pairs (G0, G2) and (G1, G2).

4 CASE STUDIES

To validate our approach, we look at case studies of two publicly
available datasets. Both are communication networks, one involves
interpersonal communication of high school students; and the other
contains e-mail communications between researchers. These case
studies help demonstrate how our approach can identify cyclic pat-
terns in data, deviations from patterns, and one-time events in time-
varying graphs.

Our pipeline requires a number of tools for processing. Graph
processing and metric space embedding are coded using Python.
Persistent homology calculations and the bottleneck and Wasserstein

distances are computed using Dionysus1. Finally, visualizations are
implemented using Processing2.

4.1 High School Communications
The High School Communications dataset [26] is a time-varying
graph that tracks the contact between high school students. The data
was collected for 180 students in five classes over seven school days
in November 2012 in Marseilles, France. The graph tracks Monday
through Friday of the first week and Monday and Tuesday of the
following week.

We compute both shortest-path and commute-time distances and
both 0- and 1-dimensional persistence diagrams. Then, both the
bottleneck and Wasserstein distances are used to compare persistence
diagrams. We present a small set of configurations and draw a
few conclusions from them. Many similar conclusions have been
identified in other configurations that are not shown.

4.1.1 An Average Day
First, to examine an average day of communication, we look at
the 0-dimensional features of the first Monday of the dataset in
Figure 1. Commute-time is used to generate persistence diagrams
and bottleneck distance is used to compare diagrams. In this figure,
a number of phases can be seen. In the early and late hours, no
interactions occur (e.g., time A). As the school day begins at time B,
light, loosely connected communications begin. By mid-morning
(time C), class MP*1, PC, PC*, and PSI* are all interacting heavily
internally and externally. Midday (times D & E), shows classes
heavily interacting once again. Early afternoon (time F) shows
mostly internal communications for classes PC, PC*, and PSI*
and internal and external communications for MP*1 and MP*2.
Finally, the end of the day, time G, shows much sparser group
communications.

4.1.2 Comparison with Other Days
While observing patterns within a single day is interesting, compar-
ing Monday with other days can help to better identify regular and

1http://www.mrzv.org/software/dionysus/
2https://processing.org/

h
h

irregular daily behavior. Figure 7 shows just such a comparison; it
uses commute-time to generate 0-dimensional persistence diagrams,
and Wasserstein distance to compare diagrams.

The top chart of Figure 7 compares the first Monday and the first
Tuesday. Ignoring outlier graph instances, two main differences can
be observed. First, the early morning of Tuesday shows different
levels of activity than Monday. This can be confirmed by looking at
examples from those days. Figure 7 (top left) shows example graphs
from Monday and Tuesday morning. Second, at the beginning and
the end of midday, Tuesday shows higher activity than Monday.

The middle chart of Figure 7 compares Wednesday, Thursday, and
Friday. Wednesday and Friday show more early morning activity
than Monday, but Thursday shows activity levels similar to Tuesday.
Individual graph instances of the time-varying graph from this time-
frame can be seen in Figure 7 (middle left). Late morning shows
that Wednesday is extremely active, while Thursday and Friday are
mostly inactive. Midday (midrange active) and the afternoons (inac-
tive) across all three days remains similar. Sample graphs for this
timeframe are shown in Figure 7 (middle right).

The bottom of Figure 7 shows the second Monday and Tuesday.
These days show almost no morning activity (also see Figure 7
(bottom left)) and normal midday activity. Early afternoon shows
midrange and high activity for Monday and Tuesday, respectively.
Graphs associated with these activity levels can be seen in Figure 7
(bottom right).

As a means to compare results to a more traditional analytic,
Figure 8 bottom is a timeline that captures the number of interaction
events for a given graph instance in the time-varying graph (i.e.,
the sum of the weights). Comparing this chart to our approach in
Figure 8 top, it is clear that our approach captures a different type of
behavior than edge counting alone.

4.1.3 1-Dimensional Topological Features
The High School Communications dataset ultimately contains very
few 1-dimensional topological features, the majority of which have
low persistence. The one-time exception, which appears on the first
Monday, can be seen in Figure 9. Between 11:48 am and 12:48
pm, a high-persistence 1-dimensional pattern appears in the graph.
The nodes of the graph are parameterized using that feature and
visualized using a cyclic rainbow colormap. The graph shows a
large tunnel (loop) toward the upper left.

First	Monday
First	Tuesday

Figure 8: Top: Persistent homology timeline for the first Monday
and Tuesday of the High School Communications dataset. Bottom:
Timeline counting the number of events (sum of all weights) in each
graph instance. The timeline shows how different features can be
identified in our approach as compared to edge counts alone.

11:48	AM	
to	12:48	PM

Circular	
Parameterization

Figure 9: Timeline of the High School Communications dataset for
1-dimensional features. The timeline was generated by comparing
the commute-time features using bottleneck distance. The single
outlier is a graph with a high persistence cycle. To highlight that
feature, the graph is parameterized and visualized with a cyclic
rainbow colormap [54].

4.2 EU Research Institution E-Mail
The EU Research Institution E-Mail [42]3 dataset is an anonymized
time-varying graph tracking e-mails between members of a large
European research institution. We have used the smaller of the
available networks containing 986 nodes and 332,334 temporal
edges. The graph tracks the activity for 803 days. A period of
about 200 days is missing toward the end of the dataset, so we have
analyzed the first 500 days. A single graph instance is created per
day and shared 45% overlap with neighboring days. Once again,
edge weight is chosen by counting the number of communications
between vertices in a graph instance.

4.2.1 Bottleneck vs. Wasserstein Distance
The bottleneck and Wasserstein distances both capture important but
distinct differences among sets of topological features. Intuitively,
the bottleneck distance (p = ∞) captures the most perturbed topolog-
ical feature (or the extreme behavior); while the Wasserstein distance
(p = 2) captures the perturbation across all features (or the average
behavior). Figure 10 shows how this difference impacts the analysis
of the EU E-Mail dataset. For 0-dimensional (Figure 10(a)) and 1-
dimensional (Figure 10(b)) bottleneck distances, the result is noisy,
as the value captured has the most variation. For 0-dimensional (Fig-
ure 10(c)) and 1-dimensional (Figure 10(d)) Wasserstein distances,

3http://snap.stanford.edu/data/email-Eu-core.html

(a)

(b)

(c)

(d)

Nov 16 2003 Nov 23 2003

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Oct 19 2003 Oct 26 2003 Nov 2 2003 Nov 9 2003

Figure 10: Comparing shortest-path bottleneck ((a) and (b)) and
Wasserstein ((c) and (d)) distance on 0-dimensional ((a) and (c))
and 1-dimensional ((b) and (d)) features in the EU E-Mail dataset.
Since bottleneck distance captures the most perturbed feature, the
result may be noisy. Wasserstein distance captures variation across
all features in the graph, resulting in a smoother pattern.

h

Figure 11: Highlights from the EU E-Mail dataset using the Wasserstein distance on 1-dimensional persistence diagrams based on shortest-path
metric. A & B show graphs from a timeframe of normal weekly cyclic activity. C & F show timeframes of limited activity from December of
2003 and 2004 during the Christmas and New Years holidays. D shows an unexpected boost in activity on June 13, 2004 that is correlated with
the release of results for the EU Parliamentary Election. E shows a 3- to 4-week period of low activity in November and December of 2004.
We could not identify any externally correlated event to explain this occurrence.

the result is smoother, since it encodes the perturbations across all
features. For our analysis of the EU E-Mail data, this property is
more desirable.

4.2.2 Revealing Cyclic Patterns
Upon investigating the data, cyclic patterns were immediately ap-
parent with all configurations of the Wasserstein distance (0- & 1-
dimensional features and shortest-path & commute-time). Figure 11
A & B show the 1-dimensional shortest-path version, where the
cyclic patterns are most prominent (also see supplemental material
for the complete 1-dimensional feature timeline).

It is notable that this pattern is related to the natural cycle of the
week. To identify the pattern of the “standard” week, we divided the
data into seven-day segments and used k-means clustering to group
similar weeks. Figure 12 shows the result with five clusters. Each
cluster shows a version of the typical week for this institution.

30 weeks 23 weeks 11 weeks

10 weeks 2 weeks

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Figure 12: Clustering of the weekly behavior in the EU E-Mail
dataset using the Wasserstein distance on 1-dimensional features
based on the shortest-path metric. The clusters shows four primary
patterns and one outlier pattern (bottom). The number of weeks in
each cluster is listed in the lower right.

4.2.3 One-time Events
When looking at the entire timeline (see supplemental material), a
number of one-time events are easily discovered. Figure 11 C & F
are two such events. During these time periods, very little activity
is present in the graphs. These times happen to be the last week
of December and first few days of January, during the Christmas
and New Year’s holidays. Figure 11 D is a one-time event that
shows an extreme increase in activity for a 1- to 2-day period. After
entering the date, June 13, 2004, into Google, we discovered that
this day corresponds to the release day of the results for the EU
Parliamentary Election. Finally, Figure 11 E shows a 3- to 4-week
period of significantly decreased activity. Despite our best efforts,
we could not identify a major external event that would have caused
such a reduction, and since the data is anonymized, we could not
identify the institution to investigate a local or internal cause.

5 DISCUSSION

In the previous section, we construct a similarity measure between
two graph instances of a time-varying graph by utilizing the bottle-
neck or Wasserstein distance between their persistence diagrams,
which encode the topological features associated with each instance.

However, one might ask: why persistent homology? We argue
that using topological data analysis and in particular, persistent
homology, to study graphs, has complementary benefits and offers
new insights. In this section, we conduct several experiments to
justify our approach. In addition, we describe some intuition behind
the information encoded by the persistence diagram of a graph, and
the distance metric defined on them.

5.1 Persistent Diagram As a Graph Fingerprint
Conventional graph-theoretical approaches typically utilize the sta-
tistical properties of the vertices and edges, for instance, degrees,
connectivity and path lengths, to describe the short range and pair-
wise interactions in the system. On the other hand, topological sum-
maries, such as the persistence diagrams, are compressed feature
representation of the underlying data, that can capture long-range
and higher order interactions.

We test our persistence-based similarity measure against a set of
desirable properties for a similarity measure on a graph (the first
four conditions are introduced in [41]):

1. Edge importance: An edge whose insertion or deletion
changes the number of connected components is more im-
portant than an edge that does not.

2. Weight awareness: In weighted graphs, the bigger the weight
of the removed edge is, the greater the impact on the similarity
measure should be.

3. Edge submodularity: Changing an edge in a dense graph
is less important than changing an edge in an equally sized,
sparse graph.

4. Focus awareness: Random changes in graphs are less impor-
tant than targeted changes of the same extent.

5. Node awareness: We add an extra condition in this paper,
i.e., deleting a large number of nodes in a graph has a larger
impact than deleting a small number of nodes from the same
graph.

We conduct several experiments on synthetic and real-world datasets
to test the above conditions.

For the node awareness (property 5), we consider the graphs
BR shown in Figure 13 (c) top left. Each graph niBR is obtained
from the original graph BR by deleting i number of nodes (in blue).
The bottleneck and Wasserstein distance matrices of PD0 between
these graphs are shown in the top of Figure 13 (a)-(b). The PD1

0 0.25 0.5 1

0 0.5 0.25

0 0.25

0

0 0.5 0.5 0.5

0 0.5 0.5

0 0.5

0

0 0.25 0.75 1

0 0.5 0.75

0 0.25

0

𝐵𝑅

𝑛1𝐵𝑅

𝑛2𝐵𝑅

𝑛3𝐵𝑅

𝑛1𝐿𝑃 𝑛2𝐿𝑃 𝑛3𝐿𝑃𝐿𝑃

𝐿𝑃

𝑒1𝐿𝑃

𝑒2𝐿𝑃

𝑒3𝐿𝑃

𝐵𝑅

𝑛1𝐵𝑅

𝑛2𝐵𝑅

𝑛3𝐵𝑅

𝑛1𝐿𝑃 𝑛2𝐿𝑃 𝑛3𝐿𝑃𝐿𝑃

𝐿𝑃

𝑒1𝐿𝑃

𝑒2𝐿𝑃

𝑒3𝐿𝑃

0 0.5 0.5 0.5

0 0.5 0.5

0 0.5

0

(a) Bottleneck dim-0 (b) Wasserstein dim-0

𝐵𝑅

𝑛1𝐵𝑅

𝑛2𝐵𝑅

𝑛3𝐵𝑅

𝐿𝑃

𝑒1𝐿𝑃

𝑒2𝐿𝑃

𝑒3𝐿𝑃

𝐵5 𝐾5 𝐶5

𝑃5

𝑍 𝑒1𝑍

𝐿 𝑒1𝐿

(c) Small graphs

Node awareness bottleneck Node awareness Wasserstein

Edge importance bottleneck Edge importance Wasserstein

𝐵𝑅 𝑛1𝐵𝑅 𝑛2𝐵𝑅 𝑛3𝐵𝑅 𝐵𝑅 𝑛1𝐵𝑅 𝑛2𝐵𝑅 𝑛3𝐵𝑅

Figure 13: Given synthetic, small exemplar graphs in (c), we study
the node awareness (property 5, a-b, top) and the edge importance
(property 1, a-b, bottom) on these graphs by computing the bottle-
neck (a) and Wasserstein distances (b) matrix between PD0 of the
corresponding graphs. All edge weights are assumed to be 1.

distance matrices are omitted since their entries are all zeros. From
the matrices in Figure 13 (a)-(b) top, we observe that the persistence-
based similarity measure is sensitive to node deletion, that is, it
satisfies node awareness, in particular, the Wasserstein distance, is
more node aware than the bottleneck distance in these examples.

Similarly, to test edge importance (property 1) against our sim-
ilarity measure, we delete a set of edges from a graph LP, shown
in Figure 13 (c) top right. The graph eiLP is obtained from LP by
deleting i edges (in blue). The bottleneck and Wasserstein distance
matrices of PD0 among these graphs are shown in Figure 13 (a)-(b)
bottom. We observe that our persistence-based similarity measure is
sensitive to edge deletions that change the connectivity of the graph,
that is, it satisfies edge importance. Notice how the Wasserstein
distance is more aware of the level of (dis)connectedness between
the graphs than the bottleneck distance.

To test weight awareness (property 2), we run our test on three
randomly generated, weighted graphs A1 = (V1,E1,w1), A2 =
(V2,E2,w2) and A3 = (V3,E3,w3), where |V1| = 50, |V2| = 60,
|V3|= 70, |E1|= 200, |E2|= 250 and |E3|= 300 respectively. Each
is generated from the Gn,m random graph model, where a graph
is chosen uniformly at random from the set of all graphs with n
nodes and m edges (by setting n = |Vi| and m = |Ei| for 1≤ i≤ 3).
The weights on the edges are drawn uniformly from (0.1,1). For
each graph Ai = (Vi,Ei,wi), we obtain a set of |Ei| modified graphs
Be

i = (Vi,Ei,ui) by modifying only the weight of an edge e (for all
edges) in Ai such that ui(e) = wi(e)+δ , where δ is drawn uniformly
randomly from (4,5); similarly, we obtain a set of modified graphs
Ce

i = (Vi,Ei,vi) from Ai by modifying only the weight of edge e such
that vi(e) = wi(e)+δ ′, where δ ′ is drawn uniformly randomly from
(2,3). Let graph eAi denote the graph obtained from Ai by deleting

W1,0 W2,0

W1,1 W2,1

Figure 14: Testing weight awareness (property 2). Points
(W (eA,Ce),W (eA,Be)) on and above the diagonal correspond to
instances where property 2 is satisfied. Three sets of graphs are
represented by blue, orange, and green points respectively.

Graphs W2,0 W2,1 W∞,0 W∞,1

A B C D ∆(W) =W (A,B)−W (C,D)

K5 e1K5 C5 e1C5 0 0.25 0 0.5
C5 e1C5 P5 e1P5 0.25 -0.25 0.5 -0.5
K9 e1K9 C9 e1C9 0 1 0 1
C9 e1C9 P9 e1P9 0.25 -1 0.5 -1
L e1L Z e1Z 0.25 0 0.5 0

Table 1: Testing edge submodularity (property 3) using the graphs
from Figure 13 (c).

an edge e. Property 2 holds when W (eAi,Be
i)−W (eAi,Ce

i)≥ 0 for
all e in Ai.

In Figure 14, we represent the difference W (eAi,Be
i)−W (eAi,Ce

i)
by plotting the points (W (eAi,Ce

i),W (eAi,Be
i)). Hence, property 2

holds for a point (x,y) on and above the diagonal (i.e. y≥ x). Note
that our similarity measure satisfies weight awareness for dimen-
sion 0 but violates the condition for dimension 1. This is because
Wq,1(eAi,Be

i)−Wq,1(eAi,Ce
i) for some e captures the creation or the

destruction of a cycle.
To test edge submodularity (property 3), we consider a set of four

graphs A, B, C and D. These graphs share the same number of nodes.
Graph A is denser than graph C; while graph B and D are obtained
from A and C, respectively, by deleting an edge. We test property 3
against four sets of small synthetic graphs in Figure 13 (c) bottom;
the results are shown in Table 1. We see that both Wasserstein
and bottleneck on PD0 better capture the changes that occur in
a sparser graph than they do on an equally sized denser graph;
i.e., they satisfy edge submodularity in dimension 0. However, these
distances behave differently on PD1. Table 1 shows some negative
entries; this is because between C and D, a cycle is either created or
destroyed; while no cycle appears/disappears between A and B (that
is, W (A,B) = 0).

For focus awareness (property 4), we generate three random
weighted graphs A1, A2 and A3 following the same Gn,m model
as before, with 35, 100, and 120 vertices, and 70, 500, and 300
edges, respectively; and all edge weights are chosen uniformly
random from (0.1,1). We generate a collection of so-called cor-
rupted (i.e., modified) graphs from the original graph with two
types of corruptions: (1) by deleting 10% to 70% of random edges
(with 10% increment) of the original graph; and (2) by deleting
the same number of edges from the original graph in a targeted
way, specifically, among the edges with the largest weights. For
each graph Ai we plot the difference between the targeted corrup-
tion Tk(Ai) and the random corruption Rk(Ai), for some percentage
k: ∆(Wq, j) := {Wq, j(Ai,Tk(Ai))−Wq, j(Ai,Rk(Ai))}70

k=10 against the
percentage of deleted edges i.

We obtain similar observations shown in Figure 15 as the property

Figure 15: Testing focus awareness (property 4). Each colored
curve represents a graph among three randomly generated graphs.
The difference between the targeted corruption and the random
corruption is plotted against the percentage of the deleted edges.

Bottleneck

Max Norm

(a) Shortest-path Distance Metric

Wasserstein

Frobenius Norm

Bottleneck

Max Norm

Wasserstein

Frobenius Norm

(b) Commute-time Distance Metric

Figure 16: Study of the stability for different similarity measures under small perturbations. The x-axis of each plot shows the percentage
of edges deleted from the graph. The y-axis represents the difference between the perturbed graph and the original graph. The y-axes are
normalized to [0,1] based upon the maximum observed values.

3 test. Our persistence-based similarity measure satisfies the focus
awareness property in dimension 0 but not in dimension 1. This is
because the deletion of an edge might create a cycle in the corrupted
graph (see the negative values in Figure 15 bottom).

5.2 Stability Under Perturbation
The persistence diagram computation depends on the distance matrix
we impose on a graph. A natural question is: What are the advan-
tages of using the persistence diagram on a graph over the distance
matrix itself as a topological fingerprint of the graph? We would
like to give some experimental evidence in this section to justify our
choice of a persistence-based similarity measure.

To simplify the analysis, we perturb a small percentage of edges
on a simple example, the “map of science” graph [7], and we focus
only on edge deletion. The experiments we show here use only PD0.
PD1 is omitted because the results are similar. The map of science
graph consists of 554 nodes and 2276 edges; we refer to it as the
baseline graph, denoted as G0.

Edge Deletion Model. Our edge deletion is designed as fol-
lows: For the i-th perturbation step, i% of edges are deleted from
the baseline G0 uniformly at random; and such a perturbation is
repeated 20 times to obtain (almost) unbiased results. We perform
a total of 20 perturbation steps, that is, up to 20% of edges can be
deleted from the baseline.

Similarity Measures. We compare variations among various
similarity measures. Recall G0 is the baseline graph, and d0 is the
distance matrix of its metric space representation. Let Gi be an
instance of a perturbed graph at the i-the perturbation step and di be
its distance matrix of its metric space representation. The first set
of similarity measures is based on bottleneck and Wasserstein dis-
tances. We examine the bottleneck distance W∞ and the Wasserstein
distance W2 between the 0- and 1-dimensional persistence diagrams
associated with G0 and Gi, respectively. The second set of similar-
ity measures is based upon matrix norms on the distance matrices.
We measure the matrix max norm, that is, ‖di−d0‖max, where
‖A‖max := maxi j |ai j| for a matrix A. We also measure the matrix

Frobenius norm, that is, ‖di−d0‖F , where ‖A‖F :=
√

∑i ∑ j(ai j)2.

Experimental Results. Figure 16 shows our experimental re-
sults. Figure 16(a) uses the shortest-path distance metric in the
computation of various similarity measures, and Figure 16(b) uses
the commute-time distance metric.

Each sub-figure is a box-plot whose y-axis corresponds to a par-
ticular similarity measure. Since these similarity measures are not
directly comparable, the range of y-axis for each plot has been
normalized to [0,1] according to the maximum similarity measure
across all experimental instances.

In Figure 16(a), under the shortest-path distance metric, there
appears to be a linear relationship between perturbation and the
bottleneck distance (and Wasserstein distance). Furthermore, the

Wasserstein distance has a smaller variance than the bottleneck
distance, making it suitable to study global perturbation in the data.
On the other hand, similarity measures based on matrix norms are
relatively unstable. Both max norm and Frobenius norm show large
fluctuations and variance, making them less suitable for analysis.
Moreover, these measures completely fail when the perturbed graph
becomes disconnected, which is not an issue for our approach.

In Figure 16(b), under the commute-time distance, we observe
that the persistence-based measure appears to be less noisy and more
stable than the shortest-path distance metric.

6 CONCLUSION

Time-varying graphs are becoming increasingly important in data
analysis and visualization. In this paper, we address the problem of
capturing and visualizing structural changes in time-varying graphs
using techniques originated from topological data analysis, in par-
ticular, persistent homology. We provide a simple and intuitive
visual interface for investigating structural changes in the graph
using persistence-based similarity measures.

There are many on-going and future research avenues based upon
our approach. For example, in our work, we restrict topological
feature extraction to Rips filtrations. Other types of filtrations, such
as clique filtration [55], can be used to analyze and understand
time-varying graphs.

One interesting question that arises in our approach is how best
to convert edge weights into distances. The conventional wisdom
is that the stronger the communication between nodes (i.e., higher
edge weight), the closer together they should be. However, we have
some evidence that such a conversion may not always capture the
underlying structural changes, and sometimes, an inverse weighting
scheme may be more effective.

It would also be interesting to perform a systematic comparison
of a wide range of similarity measures in the study of time-varying
graphs [45], in particular, to see how these different measures can
complement one another in enriching our current visual analytic
framework. A final note is that we hope the work described here
could inspire more graph visualization research to move beyond
graph-theoretical measures and venture into techniques from topo-
logical data analysis.

ACKNOWLEDGEMENTS
This work was supported in part by NSF IIS-1513616.

REFERENCES

[1] L. Babai. Graph isomorphism in quasipolynomial time.
arxiv.org/abs/1512.03547, 2016.

[2] M. Bampasidou and T. Gentimis. Modeling collaborations with persis-
tent homology. CoRR, abs/1403.5346, 2014.

[3] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source
software for exploring and manipulating networks. In ICWSM, pages
361–362, 2009.

[4] M. Baur and M. Benkert. Network comparison. In Network analysis,
pages 318–340. Springer, 2005.

[5] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in
visualizing dynamic graphs. EuroVis STAR, 2, 2014.

[6] I. Borg and P. J. Groenen. Modern multidimensional scaling: Theory
and applications. Springer Science & Business Media, 2005.

[7] K. Börner, R. Klavans, M. Patek, A. M. Zoss, J. R. Biberstine, R. P.
Light, V. Larivière, and K. W. Boyack. Design and update of a clas-
sification system: The ucsd map of science. PloS one, 7(7):e39464,
2012.

[8] M. Burch, B. Schmidt, and D. Weiskopf. A matrix-based visualization
for exploring dynamic compound digraphs. In Information Visualisa-
tion International Conference, pages 66–73. IEEE, 2013.

[9] G. Carlsson. Topological pattern recognition for point cloud data. Acta
Numerica, 23:289–368, 2014.

[10] C. J. Carstens and K. J. Horadam. Persistent homology of collaboration
networks. Mathematical Problems in Engineering, 2013, 2013.

[11] B. Cassidy, C. Rae, and V. Solo. Brain activity: Conditional dissimilar-
ity and persistent homology. IEEE 12th International Symposium on
Biomedical Imaging (ISBI), pages 1356 – 1359, 2015.

[12] G. Chartrand, F. Saba, and H. B. Zou. Edge rotations and distance
between graphs. Časopis pro pěstovánı́ matematiky, 110(1):87–91,
1985.

[13] F. R. Chung. Spectral graph theory, volume 92. American Mathemati-
cal Soc., 1997.

[14] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of graphs: theory
and application, volume 87. Academic Pr, 1980.

[15] Y. Dabaghian, F. Mémoli, L. Frank, and G. Carlsson. A topologi-
cal paradigm for hippocampal spatial map formation using persistent
homology. PLoS Computational Biology, 8(8):e1002581, 2012.

[16] V. de Silva, D. Morozov, and M. Vejdemo-Johansson. Persistent coho-
mology and circular coordinates. Proceedings 25th Annual Symposium
on Computational Geometry, pages 227–236, 2009.

[17] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[18] K. Dinkla, M. A. Westenberg, and J. J. van Wijk. Compressed adja-
cency matrices: untangling gene regulatory networks. IEEE Transac-
tions on Vis. and CG, 18(12):2457–2466, 2012.

[19] I. Donato, G. Petri, M. Scolamiero, L. Rondoni, and F. Vaccarino.
Decimation of fast states and weak nodes. Proceedings of the European
Conference on Complex Systems, pages 295–301, 2012.

[20] C. Dunne and B. Shneiderman. Motif simplification. Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2013.

[21] T. Dwyer, N. H. Riche, K. Marriott, and C. Mears. Edge compression
techniques for visualization of dense directed graphs. IEEE Trans-
actions on Visualization and Computer Graphics, 19(12):2596–2605,
2013.

[22] W. E, J. Lu, and Y. Yao. The landscape of complex networks. CoRR,
abs/1204.6376, 2012.

[23] H. Edelsbrunner and J. Harer. Persistent homology - a survey. Contem-
porary Mathematics, 453:257–282, 2008.

[24] H. Edelsbrunner and J. Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, Providence, RI, USA, 2010.

[25] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull. In
Graph Drawing, pages 483–484. Springer, 2002.

[26] J. Fournet and A. Barrat. Contact patterns among high school students.
PloS one, 9(9):e107878, 2014.

[27] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk
computation of similarities between nodes of a graph with application
to collaborative recommendation. IEEE transactions on Knowledge
and data engineering, 19(3):355–369, 2007.

[28] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-
directed placement. Software: Practice and experience, 21(11):1129–
1164, 1991.

[29] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. In IEEE Pacific
Visualization Symposium, pages 187–194, 2011.

[30] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress
majorization. In Graph Drawing, pages 239–250. Springer, 2005.

[31] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for
drawing directed graphs. IEEE Transactions on Software Engineering,
19(3):214–230, 1993.

[32] R. Ghrist. Barcodes: The persistent topology of data. Bullentin of the
American Mathematical Society, 45:61–75, 2008.

[33] M. Greilich, M. Burch, and S. Diehl. Visualizing the evolution of
compound digraphs with timearctrees. In Computer Graphics Forum,
volume 28, pages 975–982. Wiley Online Library, 2009.

[34] D. Hansen, B. Shneiderman, and M. A. Smith. Analyzing social media
networks with NodeXL: Insights from a connected world. Morgan
Kaufmann, 2010.

[35] D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph
visualization. In Computer Graphics Forum, volume 28, pages 983–
990. Wiley Online Library, 2009.

[36] Y. Hu. Efficient, high-quality force-directed graph drawing. Mathemat-
ica Journal, 10(1):37–71, 2005.

[37] W. Javed and N. Elmqvist. Exploring the design space of composite
visualization. In PacificVis 2012, pages 1–8. IEEE, 2012.

[38] S. Kairam, D. MacLean, M. Savva, and J. Heer. Graphprism: Compact
visualization of network structure. In Advanced Visual Interfaces, 2012.

[39] M. Khoury, Y. Hu, S. Krishnan, and C. Scheidegger. Drawing large
graphs by low-rank stress majorization. In Computer Graphics Forum,
volume 31, pages 975–984. Wiley Online Library, 2012.

[40] Y. Koren, L. Carmel, and D. Harel. Ace: A fast multiscale eigenvec-
tors computation for drawing huge graphs. In IEEE Symposium on
Information Visualization, pages 137–144, 2002.

[41] D. Koutra, J. T. Vogelstein, and C. Faloutsos. Deltacon: A principled
massive-graph similarity function. In Proceedings of the 2013 SIAM
International Conference on Data Mining, pages 162–170. SIAM,
2013.

[42] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densi-
fication and shrinking diameters. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):2, 2007.

[43] G. Li, M. Semerci, B. Yener, and M. J. Zaki. Graph classification via
topological and label attributes. In Proceedings of the 9th international
workshop on MLG, volume 2, 2011.

[44] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and
the mental map. Journal of Visual Languages & Computing, 6(2):183–
210, 1995.

[45] N. D. Monnig and F. G. Meyer. The resistance perturbation distance.
arXiv preprint arXiv:1605.01091, 2016.

[46] A. Noack. Energy models for graph clustering. Journal of Graph
Algorithms and Applications, 11(2):453–480, 2007.

[47] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web graph simi-
larity for anomaly detection. Journal of Internet Services and Applica-
tions, 1(1):19–30, 2010.

[48] D. Selassie, B. Heller, and J. Heer. Divided edge bundling for direc-
tional network data. IEEE Transactions on Visualization and Computer
Graphics, 17(12):2354–2363, 2011.

[49] W. T. Tutte. How to draw a graph. Proceedings of the London Mathe-
matical Society, s3-13(1):743–767, Jan 1963.

[50] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic network
exploration. IEEE transactions on visualization and computer graphics,
22(1):1–10, 2016.

[51] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. Graph kernels. Journal of Machine Learning Research,
11(Apr):1201–1242, 2010.

[52] J. T. Vogelstein and C. E. Priebe. Shuffled graph classification: Theory
and connectome applications. arXiv preprint arXiv:1112.5506, 2011.

[53] T. Von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van
Wijk, J.-D. Fekete, and D. W. Fellner. Visual analysis of large graphs:
State-of-the-art and future research challenges. In Computer graphics
forum, volume 30, pages 1719–1749. Wiley Online Library, 2011.

[54] B. Wang, B. Summa, V. Pascucci, and M. Vejdemo-Johansson. Branch-
ing and circular features in high dimensional data. IEEE Transactions
on Visualization and Computer Graphics, 17:1902–1911, 2011.

[55] A. Zomorodian. The tidy set: A minimal simplicial set for computing
homology of clique complexes. Proceedings 26th ACM Symposium on
Computational Geometry, pages 257–266, 2010.

	Introduction
	Related Work
	Approach
	Graphs and Metric Space Representations
	Extracting Topological Features
	Comparing Sets of Topological Features
	Visualization
	Example

	Case Studies
	High School Communications
	An Average Day
	Comparison with Other Days
	1-Dimensional Topological Features

	EU Research Institution E-Mail
	Bottleneck vs. Wasserstein Distance
	Revealing Cyclic Patterns
	One-time Events

	Discussion
	Persistent Diagram As a Graph Fingerprint
	Stability Under Perturbation

	Conclusion

