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This lecture’s notes illustrate the concept of computing homology.

12.1 Review of definitions

For any simplicial complex K, we have the following definitions.

Definition 12.1. The p-th cycle group Zp(K) is a set of p-th chain Cp(K) with empty boundary. That is, Zp(K) =
{c | ∂c = 0, c ∈ Zp(K)}

Definition 12.2. The p-th boundary group Bp(K) is a set of p-th chain Cp(K) that is the boundary of a (p + 1)-th
chain. That is , Bp(K) = {c | c = ∂d for some d ∈ Cp+1(K)}

Definition 12.3. The p-th homology group Hp(K) is the p-th cycle group Zp(K) modulo the p-th boundary group
Bp. That is, Hp(K) = Zp(K)/Bp(K)

From now on, we simplify the notation Zp(K) = Zp, Bp(K) = Bp and Hp(K) = Hp when K is apparent.

Roughly speaking, Hp is the group of cycles that don’t bound. Here is an example.

Figure 12.1: The first example

Let c = 13 + 34 + 14. c is a cycle which means c ∈ Z1. However, there is not a d ∈ C2 such that c = ∂d and so
c /∈ B1. Therefore, c is a non-identity element of H1.
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Let c′ = 12 + 23 + 13. c′ ∈ Z1. Also, c′ = ∂d′ where d′ = 123 and so c′ ∈ B1. That means c′ is an identity in H1.

Let c′′ = 12 + 23 + 34 + 14. We can express c′′ as (13 + 34 + 14) + (12 + 23 + 13) = c+ c′. It means that c′′ ≈ c
in H1.

Here is another example.

Figure 12.2: The second example

Consider 12 + 25 + 35 + 34 + 14. Is this cycle an identity in H1? The answer is yes. We can express it as
(13 + 34 + 14) + (12 + 23 + 13) + (23 + 35 + 25). It is easy to see that 12 + 23 + 13 and 23 + 35 + 25 are in B1

but 13 + 34 + 14 is not.

Definition 12.4. A generating set of a group G is a subset of G such that every element in G can be expressed as the
combination (under group operation) of finitely many elements of the subset and their inverses.

Definition 12.5. Rank of a group G rank(G) is the smallest cardinality of a generating set of G. That is, rank(G) =
minS⊂G |S| where minimum is over all generating set of G.

Definition 12.6. The p-th Betti number βp is the rank of Hp. That is, βp = rank(Hp).
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Figure 12.3: Generating set example

In the above example, rank(H1) = 2 not 3. Consider

c1 = 12 + 23 + 13

c2 = 23 + 34 + 24

c3 = 12 + 13 + 34 + 24

It is easy to check that the smallest set of H1 is {c1, c2} or {c2, c3} or {c1, c3}. This example also shows that the
smallest generating set may not be unique.

Recall that all p-th chain Cp are connected by boundary operator ∂.

C2
∂−→ C1

∂−→ C0

If 123 ∈ C2, then

∂(123) = 12 + 13 + 23 ∈ C1

∂(12) = 1 + 2 ∈ C0

More generally,

· · · → Cp+1
∂p+1−−−→ Cp

∂p−→ Cp−1 → . . .
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Figure 12.4: Illustration of boundary map

12.2 Reduced homology

Consider the augmentation map E : C0 → Z2 defined by E(u) = 1 for every vertex u.

· · · → C1
∂2−→ C1

∂1−→ C0
E−→ Z2 = C−1

0−→ 0

Definition 12.7. The p-th reduced homology group H̃p is defined as following.

H̃p = ker ∂p\ im ∂p+1 = Hp

In particular,
H̃0 = kerE\ im ∂1

Definition 12.8. The p-th reduced Betti number β̃p is the rank of H̃p. That is, β̃p = rank(H̃p).

If K is not empty, then {
β̃p = βp , for p ≥ 1

β̃0 = β0 − 1

If K = ∅, then β̃−1 = 1

12.3 Algorithm

This is the algorithm for computing β̃p.

Input: p-th boundary matrix ∂p for all p
where the column represent p-simplices, ηp
and the row represent (p− 1)-simplices, ηp−1

Use row and column operation to reduce ∂p to Smith normal form (SNF) Np

return n0 − n1
where n0 is number of zero column in Np

and n1 is number of non-zero row in Np+1
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Recall that a matrix is SNF if

• all non-diagonal element are zero

• all non-zero row are above all zero row

Indeed, we can prove that n0 = rank(Zp) and n1 = rank(Bp) and therefore the output is exactly β̃p.

Recall that column and row operation consist of the following.

Column operation:

• exchange column k with column l

• add column k to column l



...
...

...
...

· · · col k · · · col k + col l · · ·
...

...
...

...


=



...
...

...
...

· · · col k · · · col l · · ·
...

...
...

...





1
...

· · ·
. . . (row k) 1 · · ·

. . . (col l)
. . .
... 1


Row operation:

• exchange row k with row l

• add row l to row k



...
· · · · · · row k + row l · · · · · ·

...
· · · · · · row l · · · · · ·

...


=



1
...

. . .

(col k)
. . .

· · · 1 (row l)
. . . · · ·

... 1





...
· · · · · · row k · · · · · ·

...
· · · · · · row l · · · · · ·

...


Therefore, Np = Up−1∂pVp where Up−1 represent the row operation and Vp represent the column operation.

Here is the example. The following K is called triangulated 3-ball which consists of all possible combination. That
is, K = {a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd, abcd}.
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Figure 12.5: Triangulated 3-ball

It is easy to check β̃0 = β0 − 1 = 0, β̃1 = β1 = 0, β̃2 = β2 = 0. Now, we can compute this by the above algorithm.

∂0:
a b c d

1 1 1 1 1

Adding column 1 to column 2, 3 and 4:
a b c d

1 1 0 0 0

N0:
a b c d

1 1 0 0 0

Therefore, rank(Z0) = 3 and rank(B−1) = 1.

∂1:
ab ac ad bc bd cd

a 1 1 1 0 0 0
b 1 0 0 1 1 0
c 0 1 0 1 0 1
d 0 0 1 0 1 1

Adding row 1 to row 2:
ab ac ad bc bd cd

a 1 1 1 0 0 0
b 0 1 1 1 1 0
c 0 1 0 1 0 1
d 0 0 1 0 1 1

Adding column 1 to column 2 and 3:
ab ac ad bc bd cd

a 1 0 0 0 0 0
b 0 1 1 1 1 0
c 0 1 0 1 0 1
d 0 0 1 0 1 1
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Adding row 2 to row 3:
ab ac ad bc bd cd

a 1 0 0 0 0 0
b 0 1 1 1 1 0
c 0 0 1 0 1 1
d 0 0 1 0 1 1

Adding column 2 to column 3, 4 and 5:

ab ac ad bc bd cd
a 1 0 0 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 1 1
d 0 0 1 0 1 1

Adding row 3 to row 4:
ab ac ad bc bd cd

a 1 0 0 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 0 0
d 0 0 0 0 0 0

N1:
ab ac ad bc bd cd

a 1 0 0 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 0 0
d 0 0 0 0 0 0

Therefore, rank(Z1) = 3 and rank(B0) = 3. Also, β̃0 = 0.

∂2:
abc abd acd bcd

ab 1 1 0 0
ac 1 0 1 0
ad 0 1 1 0
bc 1 0 0 1
bd 0 1 0 1
cd 0 0 1 1

Adding row 1 to row 2 and 4:
abc abd acd bcd

ab 1 1 0 0
ac 0 1 1 0
ad 0 1 1 0
bc 0 1 0 1
bd 0 1 0 1
cd 0 0 1 1

Adding column 1 to column 2:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 1 0
ad 0 1 1 0
bc 0 1 0 1
bd 0 1 0 1
cd 0 0 1 1
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Adding row 2 to row 3, 4, 5 and 6:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 1 0
ad 0 0 0 0
bc 0 0 1 1
bd 0 0 1 1
cd 0 0 1 1

Adding column 2 to column 3:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 0 0
ad 0 0 0 0
bc 0 0 1 1
bd 0 0 1 1
cd 0 0 1 1

Exchanging row 3 with row 4:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 0 0
bc 0 0 1 1
ad 0 0 0 0
bd 0 0 1 1
cd 0 0 1 1

Adding row 3 to row 5 and 6:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 0 0
bc 0 0 1 1
ad 0 0 0 0
bd 0 0 0 0
cd 0 0 0 0

Adding column 3 to column 4:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 0 0
bc 0 0 1 0
ad 0 0 0 0
bd 0 0 0 0
cd 0 0 0 0

N2:
abc abd acd bcd

ab 1 0 0 0
ac 0 1 0 0
bc 0 0 1 0
ad 0 0 0 0
bd 0 0 0 0
cd 0 0 0 0

Therefore, rank(Z2) = 1 and rank(B1) = 3. Also, β̃1 = 0.



Lecture 12: Feb 16, 2017 12-9

∂3:
abcd

abc 1
abd 1
acd 1
bcd 1

Adding row 1 to row 2, 3 and 4:
abcd

abc 1
abd 0
acd 0
bcd 0

N3:
abcd

abc 1
abd 0
acd 0
bcd 0

Therefore, rank(Z3) = 0 and rank(B2) = 1. Also, β̃2 = 0.

Here is another example. This example is same as the previous one except that the center is hollow. That is, K =
{a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd}.

Figure 12.6: Hollow triangulated 3-ball

In this case, ∂3 doesn’t exist. Therefore, β̃2 = 1− 0 = 1.


