Chapter 9

Fast Linear Solvers

We have already discussed how to solve tridiagonal linear systems of equa-
tions using direct solvers (the Thomas algorithm) in chapter 6 and some itera-
tive solvers (Jacobi, Gauss-Seidel, SOR, and multigrid) in chapter 7. We have
also discussed solutions of nonlinear and linear systems and have introduced
the conjugate gradient method in chapter 4. In the current chapter we revisit
this subject and present general algorithms for the direct and iterative solu-
tion of large linear systems. We start with the classical Gaussian elimination
(which is a fast solver!) and then proceed with more sophisticated solvers and
preconditioners for symmetric and non-symmetric systems.

In parallel computing, we introduce the broadcasting command M PI_Bcast,
and demonstrate its usefulness in the context of Gaussian elimination. In ad-
dition, we reiterate the use of M PI_Send, M PI_Recv, M PI_Allgather, and
M PI_Allreduce through example implementations of algorithms presented in
this chapter.

612
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9.1 Gaussian Elimination

Gaussian elimination is one of the most effective ways to solve the linear system
Ax =b.

The Thomas algorithm, see section 6.1.4, is a special case of Gaussian elimi-
nation for tridiagonal systems.

The computational complexity of Gaussian elimination is associated with
the size and structure of the n x n matrix A, and so is its accuracy. It is based
on the “superposition principle” for linear systems, i.e., the fact that we can
replace equations of the original system with equivalent equations formed as
linear combinations of the rows of A and corresponding values of b. In its
simplest form it states:

e Take each row and subtract a multiple of it from subsequent rows in
order to zero out the element of A below the diagonal.

We demonstrate this by the following example.
Example: Consider the 3 x 3 system

1 1

1 1 1

=P I (9.3)
- — —Tr3 = .
37! 47578

We will solve this (3 x 3) system in two stages of elimination.

Stage 1: In the first stage we target the first term placed in a box in the equation
above. To this end, we select the pivot a;; = 1 and also the multipliers:
1/2 1 asy 1
=210 and ) =2L=Z
21 0 1 / n 31 a1 3
We then multiply equation (9.1) by egﬁ) and subtract it from equation

(9.2). We also multiply equation (9.1) by egﬁ) and subtract it from equa-
tion (9.3). The resulting two new equations replace (9.2) and (9.3), i.e.,

T T T3 =
! 2 2 3 3
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1 1
— —x3=1/2 9.4
7| T opn=l (94)
1 4

Next, we target the x5 term, and choose a new pivot and new multipliers,
respectively, as:

m_ 1, 112

_ 5(2) — -1
Qg2 12’ 32 1/12 )

and proceed as before by multiplying equation (9.4) by 5:(322) and subtract-
ing it from equation (9.5), we obtain

1 1
1‘1+§JI2 + —1'3:3

3
N S 9.4
1272 1277 3 '

1 1

We now see that the system of equations (9.1), (9.6) and (9.7) can be
solved easily by back substitution starting from equation (9.7), then
equation (9.6) and finally equation (9.1), to obtain:

r3 = —-90

v = 12 [l—i(—go)] _ 96

2 12
1 1
= 3—=(96) — =(—90) = —15
1 5(96) = 5(=90)

1 % % T 3
11 _ 1
0 % T2 | = 2

[N
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so the coefficient matrix is upper triangular; we will denote this matrix by U.
We also collect all the multipliers ég.c) we have calculated to form the following
lower triangular matrix L

10 0
1
L:%]_O,
11

where we have places 1’s in the diagonal. We can verify that

1 5 3 10 0 I,

(1 1 1] _11 1 1 | _
A=l5 3 7 |=]3 1 0]]0 35 5 |=LU
1 1 1 1 1
3 15 3 11110 0 4

Therefore, the two first stages of Gaussian elimination resulted in the fac-
torization of A into an LU product. Both L and U are special matrices, and
this leads to substantial reduction in computational complexity.

Remark: The matrix A employed in this example is a special matrix that

has elements a;; = Zﬂ%l so the n'!" row is the vector

<1 1 1 1 >T
n n+1" n+2 " 2n—-1)

For n large, e.g., n = 1000, the entries of the last row are about three orders
of magnitude smaller than the entries of the first row. This large disparity
leads to many difficulties because of the ill-conditioning of this matrix. This
matrix was first introduced by the famous mathematician David Hilbert, and
it is called the Hilbert matriz; it is an example of an ill-conditioned matrix.
Its condition number is large, e.g., greater than 10° for n > 5.
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9.1.1 LU Decomposition

We now generalize the Gaussian elimination procedure to an n X n system

airy + ai2%s + ... + AipTp, = bl
a21T1 + A2y + ... + QAopTp, = b2
An1T1 + ApaXs + ... 4+ appxn, = b,.

In the general case we need (n — 1) stages of elimination in order to arrive
at the upper triangular system. We will assume that all the pivots at every
stage k are aEZ)) # 0, but we will remove this constraint later when we discuss
algorithms that involve row and/or column pivoting.

The first stage of elimination leads to

anri + aipry + ... 4+ apT,= b
a%)xg + ... + agl)xn = bgl)
ars + ... + alz, = b,

Here the intermediate coefficients agjl-) are defined by

a;
“z('yl') = a; —aylly; ) =
an
and the entries on the right-hand-side are
b = b, — b, HL
' an

Similarly, the second stage of elimination produces ag) and 652), and so on,
until the (n — 1)™ stage, where we obtain a("~" and b»~1.
This procedure is the forward substitution and gives both matrices L and

U. In particular, we replace Ax = b by

LUx =b = Ly = b,
-~
y
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where
Ux=y.

We can now summarize the solution procedure, which consists of three main
steps, as follows:

1. LU decomposition: A =L-U

2. Forward Solve for y: Ly = b

3. Backward Solve for x: Ux =y

The pseudo-code for steps (1) and (2) is:

fork=1n-1
fori=k+1,n

a; _
Ui = — (assuming agy, # 0)
Ak

forj=k,n
aij = ij — Ligay;
endfor
bi = b; — Lirby
endfor
endfor

Computational Cost: The operation count for the above code is obtained

by considering first the innermost loop 7, then the loop 7, and finally adding

operations from all elimination stages: £k = 1 to n — 1. Thus, we have
—Dn(2n—-1) 2 4

n—1 n—1
WLU:2Z(n—k)-(n—k):2Zm2:2(n R =n°,
k=1 m=1 6 3

where the factor 2 accounts for one addition and one multiplication. If only
multiplications are counted then

TL3

WLU%Ea

which is the operation count often quoted in the literature.

The third step in the solution is the backward substitution, which yields first
pn—1)

—_n_
Tn = ")
ann
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and marching backward all the way to the first entry, we have

b1 — Q1279 ... — A1pTp

xry =
a1

The following pseudo-code represents this back solve:

for k = n, 1 (reverse ordering)
xy, = by (initialization)
fori=k+1,n
Tk = Tk — Qkili
endfor
T = xk/akk
endfor

We conclude from the above that the operation count for the backward /forward
substitution is O(n?).

Remark 1: In the pseudo-code above, steps (1) and (2) are accomplished
together for computational efficiency. Solving for y amounts to adding the
(b; = b; — libg) line in the appropriate place. At the conclusion of this algo-
rithm, the matrix A has been over-written with the upper triangular matrix
U, and the vector b has been over-written with the solution of Ly = b. All
that remains is to accomplish the backsolve for Ux =y.

Remark 2: Note that in both pseudo-codes above we have attempted to min-
imize the required memory by over-writing onto the same memory locations.
However, this should be avoided in cases where we are interested in using the
matrix A again somewhere else in our program. In the codes above both the
entries of matrix A and the entries of the right-hand-side are over-written.

Remark 3: We have already discussed the Thomas algorithm in section 6.1.4,
which is a subcase of the LU decomposition presented here with bandwidth
m = 1. In general for a banded matrix with order n and (semi-) bandwidth
m the operation count is

e LU decomposition: O(m?n),m < n
e Back Solve: O(mn),m < n
Remark 4: The Gram-Schmidt QR factorization of a matrix presented in

chapter 2 produces an upper triangular matrix R but the Q matrix is an
orthogonal full matrix. The Gram-Schmidt algorithm costs O(2n?) (including
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addition and multiplications), i.e., it is three times more expensive than the
LU algorithm. However, the QR decomposition can also be achieved by the
Householder method which is only twice as expensive, i.e., it costs O(§n3), see
section 9.3 below.

Remark 5: (Cramer versus Gauss) We compare here the cost for solving
Ax = b using the Cramer method of determinants (time ¢c) which is O(n!)
versus the Gaussian elimination method (time tg) which is O (23&3) We as-

sume that we use a processor with sustained speed of 1 Gflops'.

3!
tc ~ 109 seconds = 6 nanoseconds
n=23
2 33
te ~ ——— seconds ~ 18 nanoseconds
3109
t 10 d 3 malls d
~ — seconds =~
AT n milliseconds
n =10
2103
o~ 3100 seconds = 0.6 microseconds
10!
to ~ 109 seconds = 675,806 hours ~ 28,1585 days ~ 80 years
n=20:
2203
ta ~ ——— seconds =~ 5 microseconds
3109

Clearly, Gauss wins by years! In figure 9.1 we plot the growth in computational
work of Cramer’s method versus the Gaussian elimination method.

Remark 6: The Gaussian elimination offers an efficient way of computing the
determinant of A, since

det(A) = det(L)det(U)

= 1'[U11'U22...Unn]

where u;;, i = 1,...,n are the diagonal elements of the upper triangular matrix
U. We recall that the determinant of any triangular matrix is simply the
product of its diagonal elements.

IThe TeraHertz processor is already in the horizon; it will consist of about one billion
transistors!
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Figure 9.1: Comparison of the growth of computational work in Cramer’s
method, n!, versus Gaussian elimination method, §n3.

Remark 7: The Gaussian elimination can be used to explicitly construct the
inverse A~! by setting the columns of the identity matrix I = AA™" as

b;=(0...0 1 0...0"

index i

with only the i*" entry being non-zero, and solve
AXi:bi, Z:]_,,TL

The solution vector x; forms the column i*! of the inverse A~!. Note that this
involves only one LU decomposition and n back solves of O(n?) and the total
cost is still O(n?) .

9.1.2 To Pivot or Not to Pivot?

So far we have conveniently assumed that all the pivoting elements are non-
zero, i.e.,

ag) #0
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but this is not guaranteed for all problems! In practice, these pivots may be
zero or very small numbers so that the multiplies ég.c) can potentially be very
large numbers. To understand the effect of this, let us consider the 2 x 2 matrix

s=|1 1]

where € < 1. The condition number of A is ko(A) — 2.6180 as € — 0 so this
is a well conditioned matrix. We now obtain the LU decomposition of A :

The L matrix is

and the U matrix is
€ 1
U= l 0 1—¢t ] )

For e sufficiently small, 1 — ¢ ! ~ —e ! and thus

SO

e 1
L'U_l1 0]’

which is different than the original matrix A in the (2,2) entry, since
e 1
A= [ ¢ ! ] |
We note that for any value of asy # 1 (of order one) we get the same answer,
which is obviously wrong! This is an example of a numerical instability. It is
due to the fact that the condition number of L and U is extremely large unlike
the condition number of the matrix A which is order one. This problem can

be avoided if we simply reverse the order of the equations, i.e., interchange the
rows, and work with the re-ordered matrix

[

as now the multiplier is € < 1.
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We can generalize the result above and apply row interchange, which is
also called partial pivoting, to obtain multipliers

|£z]| <1.

The following pseudo-code describes Gaussian elimination with partial piv-
oting. It is an extension of the code we described earlier in the forward solve.

fork=1,n—-1
|ami| = max{|agk|, |akt1kls - - - |ank|}
p=m
forg=Fk, n
C = Qpq
Okg = Qpq
Qpg = C
endfor
fori=k+1,n
Ui, = Qi / Qg
forj=k+1,n
Q5 = Q5 — fz‘kakj
endfor
endfor
endfor

We note that for the system Ax = b we also need to interchange appropriately
the right-hand-side. Unlike the standard Gauss elimination, in the partial
pivoting case we have

A#£LU

but A = P~!LU is true, where P is a permutation matrix describing the
partial pivoting.

While partial (row-pivoting) works effectively in practice, there are a few
pathological cases where even this may breakdown. In these cases, we can
perform an additional similar pivoting by columns, searching for a maximum
pivot along both rows and columns. In general, indications of an ill-conditioned
matrix are provided by the small magnitude of the pivot or the large magnitude
of the solution compared to the right-hand-side, although there are matrices
which do not have these properties but they are still ill-conditioned.

Remark 1: For bounded matrices, (e.g., the tridiagonal systems involved in
Thomas algorithms; see section 6.1.4), partial pivoting and complete pivoting
result in increasing the bandwidth and even producing full matrices. Therefore,
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the computational work instead of being linear as in the Thomas algorithm
may become O(n?) or O(n?) for row or row/column pivoting, respectively.

Software

(o)  Putting it into Practice
Suite

The function below is an implementation of both the pivot and non-pivot
versions of Gaussian elimination by LU decomposition. Three arguments are
required: the matrix A, the vector b, and an integer parameter pivotflag
denoting whether the pivoting should be enabled (zero for no-pivoting and
one for pivoting).

void GaussElimination(SCMatrix &A, SCVector &b, int pivotflag){
int pivot;
int N = A.Rows();

/* NOTE: The values contained in both the matrix A and
the vector b are modified in this routine. Upon
returning, A contains the upper triangular matrix
obtained from its LU decomposition, and b contains
the solution of the system Ax=b*/

// Steps (1) and (2) (decomposition and solution of Ly = b)
switch(pivotflag){
case 1: // Case in which pivoting is employed

for(int k=0; k < N-1; k++){
pivot = A.MaxModInColumnindex(k,k);
A.RowSwap(pivot,k);
Swap (b(pivot) ,b(k));
for(int i=k+1;i<N;i++){
double 1_ik = A(i,k)/A(k,k);
for(int j=k;j<N;j++)
A(i,j) = A(4,j) - 1_ik*xA(k,j);
b(i) = b(i) - 1_ikx*b(k);
+
+

break;
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case 0: // Case O/default in which no pivoting is used
default:

for(int k=0; k < N-1; k++){
for(int i=k+1;i<N;i++){
double 1_ik = A(i,k)/A(k,k);
for(int j=k;j<N;j++)
A(i,j) = A(4,j) - 1_ik*xA(k,j);
b(i) = b(i) - 1_ikxb(k);
+
+
}

// Step (3) (backsolving to solve Ux=y)
b(N-1) = b(N-1)/A(N-1,N-1);
for(int k=N-2;k>=0;k--){
for(int j=k+1;j<N;j++)
bk) -= A(k,j)*b(j);
b(k) = b(k)/A(k,k);
}

Remark 2: In the implementation above we use a switch statement to par-
tition the different cases. Two advantages are: code readability and the ease
of adding another condition. Suppose that we decided to implement a new
pivoting algorithm; within the current function we could merely add another
case to denote the new pivoting functionality.

Notice that it is not required that case ‘0’ go before case ‘1’. Recall that
the switch statement evaluates the validity of the switch in the order given
in the code, hence in this case the switch statement first checks to see if case
‘1’ is valid, and if not checks for case ‘0’. Also notice that we use a ‘default’
case. If neither a zero or a one is given in the switch input, the default will be
executed. In this example, the default case and case ‘0" are identical.

Remark 3: In the code above, we utilize two Matriz class methods:
1. Matrix::MaxModInColumnindex(. . .), and

2. Matrix::Rowswap(...).
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The first method implements the maximum modulus in a column operation
needed for pivoting. The second method swaps two rows of the matrix A.
The advantage of using these two methods is that from this level in the code
the implementation details of how these two functions are accomplished are
not our concern. At the level of this code we merely need to know the input,
output, and contract for the methods.

Remark 4: Notice that in the code above we both declare and initialize the
iterating value (such as int k=0) within the for loops. Recall that C++ does
not require us to declare all variables at the beginning of the function. In this
function we have made liberal use of this ability by declaring and initializing
each iterating value with its respective for loop.

The need for pivoting is dictated by the properties of the matrix A. There
are two special categories of matrices for which we do not need to pivot. These
matrices are:

e Diagonally-dominant, or

e Positive-definite.

A strictly diagonally-dominant matrix has the property
n

|aii|>2|aij|,i:1,...,n; ]7£Z
j=1

and it is guaranteed to be non-singular.
A positive-definite matrix is defined by the condition

Vx #0, xTAx >0,

which guarantees that the matrix A is non-singular. In addition, the above
properties guarantee that there will be no numerical instabilities in systems
where such matrices are involved.

Fortunately, many of the algebraic systems resulting from PDEs that de-
scribe physical phenomena (presented in chapters 6 and 7) have these desir-
able properties. In particular, the matrix obtained from the discretization of
d?u/dz? (see chapter 6) is tridiagonal with diagonals (1,—2,1). Although it
does not satisfy strictly the diagonal dominance condition, it is an irreducible
matriz, i.e., its associated directed graph is strongly connected, and this con-
dition is equivalent to diagonal dominance.
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The special matrices we have described are guaranteed to be non-singular
but they are also far from being even approximately singular. Clearly, if a
matrix A is singular, then Gaussian elimination cannot be applied as A~ does
not exist. However, in practice many matrices are almost singular, and this
is the condition we should investigate, as it leads to numerical instabilities.
The value of the determinant, if the matrix is scaled properly, can give us
an indication if the matrix is almost singular or ill-conditioned. However,
computing determinants is costly and at least equivalent in computational
complexity to an LU decomposition, the stability of which we investigate in
first place! Only for special matrices the computation of determinant may be
employed.

Another approach is to employ the condition number x(A) for matrix A,
ie.,

K(A) = A [[AT]

As we have seen in chapter 2 it relates the perturbation of data to the changes
in the solution, i.e.,
| Ax ||

[Ea

| Ab |
o]

The condition number is always computed with respect to some norm. We will
use the notation k;(A) to denote the condition number of A with respect to
the || - ||; norm. When no subscript is given, we assume that the || - || norm
is used. We can define relationships between different norm-based condition
numbers using the equivalence relations between the norms.

By definition the condition number k(A) is greater or equal to one, but we
are interested in extremely large values of k(A), as it acts as an amplifier in
the propagation of disturbance (noise) from the input to output (solution).

For symmetric matrices we have that

< r(A)

| Amaxl
- )
|)\min|

Ko(A)

and we have computed the eigenvalues A; for several cases in chapter 6; see also
chapter 10. For general matrices, however, it is difficult to compute the condi-
tion number economically so approximate estimation algorithms are employed.
Here we will present the estimator proposed by Hager [52]; see also [26]. The
algorithm? obtains a lower bound on the inverse matrix in the one-norm. How-
ever, we note that A~! is not constructed explicitly as this is costly, in fact

2This algorithm is available in LAPACK, routines sgesvx and slacon.
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it requires an O(n®) operation! Instead, the matrix-vector products A~'x are
computed on-the-fly:

Initialize:  x:|| x[;=1

Begin Loop: y = A™'x
z = sign(y)
q=(A"")"z
if || q|le< alxreturn ||y |1
elseif x = e;sign(g;) with |¢;| =|| q ||~
endif
End Loop

Here e; = (0,0,...,1,...0)" is the j™ column of the identity matrix. The
condition number is then estimated from

el Ayl

We note that || y ||, is a local maximum to || A='x ||;, and that this method
is based on computing the gradient of f(z) ~|| A~1x ||;; for a detailed expla-
nation of the algorithm see [52].

Remark 5: The accuracy degradation of the solution, if the condition number
is large, can be estimated as follows: Assuming that the condition number is
k(A) ~ 107, then the number of accurate digits in the solution is (¢ — p) if the
solution is computed in ¢-digit arithmetic.

9.1.3 Parallel LU Decomposition

The efficient parallel implementation of decomposing a non-singular matrix A
into its LU factorization requires that we address two main issues:

1. How to split the matrix A among the processors.

2. How to organize the triple loop so that efficient BLAS operations can be
employed.

We consider here distributed memory computers so only parts of the matrix
A are stored in each processor. The obvious ways to split the matrix A are
by rows or by columns, but it may also be beneficial to split it in blocks. A
better layout, often used in practice, is interleaved storage either by row or by
column. We examine these different cases in some detail in the following.
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With regards to organizing the triple nested loop — recall that we deal with
an O(n®) operation — there are six ways of permutating the indices (ijk), just
like in matrix-matrix multiply that we discussed in chapter 2. In table 9.1 we
present all six versions and basic operations involved.

We have defined the basic operation in table 9.1 as the operation involved
in the innermost loop. In four versions this is a dazpy operation (i.e., double
a (scalar) x (vector) plus y (vector), while in the other two versions (ijk and
jik) it is a ddot (i.e., double dot product). These are both BLAS1 operations
and cannot easily take advantage of cache blocking or data re-use, see section
2.2.6. Thus, appropriate modifications of these basic loops are required to be
able to employ BLAS2 and BLAS3 routines. This will depend on the specific
way we layout the matrix A in order to also maximize parallel efficiency. We
examine this issue in more detail next.

Access By Rows

Let us first assume that the matrix A is accessed by rows as in the (kij) loop
of table 9.1; see figure 9.2 for a schematic explanation. Let us also assume
that the first processor P, holds the first row al’, P, holds a?” and so on.

During the first elimination stage, the processor P; needs to send its row
to all other processors so that processors P, ... P, will simultaneously update
their columns. Therefore, the operations

o= 041 ;o
li o j=2,...n
Qi = Qg5 —Eﬂalj PQ,...Pn

can be performed in parallel. During this first stage, processor P; remains
essentially idle after it communicates with the rest of the processor.

The second stage also starts with a communication step as P, needs to
broadcast its new row to all other processors P;...P,. It too remains idle
after that, while P;... P, update their rows in parallel, and so on for the
remaining stages. The computations of the multiplies as well as the updates
are done in parallel but after the k' stage, k processors (P;...P;) remain
idle. This approach reduces significantly the parallel efficiency.

Some improvements can be made by overlapping communication with com-
putation. For example, the broadcasting of the row of processor P, can be done
immediately after it is computed, so that the other processors receive it while
they are updating their rows during the £*® stage of elimination. This overlap-
ping of computation and communication is called send-ahead operation and it
is quite common in distributed memory parallel computers. Another improve-
ment would come about if we manage to increase the work done in parallel
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1. ijk Loop: A - by column (ddot)

2. ikj Loop: A- by row (daxpy)

fori =2,n

for 7 =24
lij1 = Gij-1/aj15-1
fork=1,7—-1
Q5 = Qjj — Eikakj
endfor
endfor
for j=i+1,n
fork=1,i—1
aij = ij — liky;
endfor
endfor
endfor

for i=2,n
for k=1,1—1
Uiy, = az‘k/ 973
forj=k+1,n
Qi = Qjj — gikakj
endfor
endfor
endfor

3. jik Loop: A - by column (ddot)

4. jki Loop: A - by column (daxpy)

for =2,n
for p=7,n
lpj—1 = Gpj-1/0j-1,5-1
endfor
for 1 =2,
fork=1,1—1
Qi = Qjj — gikakj
endfor
endfor
for i=j5+1,n
for k=1,7—-1
Qi = Qjj — gikakj
endfor
endfor
endfor

for j=2,n
for p=j,n
lpj1 = Gpj1/aj11
endfor
for k=1,7—-1
for i=k+1,n
Q5 = Qjj — fikakj
endfor
endfor
endfor

5. kij Loop: A - by row (daxpy)

6. kji Loop: A - by column (daxpy)

for k=1,n—-1
for i=k+1,n
Uiy, = az‘k/akk
for j=k+1,n
aij = ij — liky;
endfor
endfor
endfor

for k=1,n—-1
for p=k+1,n
Coe = api/ Qg

endfor
for j=k+1,n
fori=k+1,n
Q5 = Qjj — fikakj
endfor
endfor
endfor

Table 9.1: Six different ways of writing the LU triple loops.
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Figure 9.2: Schematic of communication (a) and computation (b) pattern when a
matrix is partitioned such that each processor contains one row.

relative to communications. In general, the parallel efficiency improves as the
ratio of computations to communications becomes larger. Thus, for given re-
quired communication the local work is increased as many rows are stored in
each processor, so we have one, say, send-ahead operation every 100 rows on
a P = 10 processor system and a matrix of n = 1000.

Blocked Layout

The row-blocked layout of the matrix A suggests that the practical way of
storing A is by rows, and it extends also to a column-blocked layout, e.g.,
in the kji algorithm described in table 9.1. In this case, the multiplies /;;
are computed on the processor P; (or its corresponding number for blocked
storage), and then ¢;; are broadcasted to all other (active) processors.
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Partial pivoting in either the row-blocked or column-blocked parallel ver-
sions is handled differently. In the latter version, a search for the maximum
pivot is performed within the processor while in the former (kij loop) the
searching is across processors; this requires a fan-in algorithm for the maz
operator, as discussed in chapter 2.

Another improvement of the row-blocked or column-blocked layout schemes
is to introduce a cyclic or interleaved layout, see figure 9.3. For example,
assuming that we have available £ = 10 processors for a 100 x 100 matrix A,
then we pursue the following storage scheme:

P rows 1,11,21,...,91
Py rows 2,12,22,...,92

Pyy: rows 10,20,...,100

and similarly in a column-oriented storage scheme. Examining figure 9.3, we
observe that during stage 1a processor one communicates row one to all other
processors, and then in stage 1b all processors are active accomplishing row re-
duction. In comparison to the previous block setup in which rows one through
ten would be assigned to processor one, rows 11 through 20 to processor two,
etc., row two is now located on processor two. Hence in stage 2a, processor two
communicates row two to all other processors, and in stage 2b all processors
accomplish row reduction concurrently. In this manner, for the first m = 90
stages all the processors remain active both in communication and computa-
tion. Some inefficiencies may occur during the last few stages, however, as the
final row assigned to a processor is eliminated, hence retiring the processor
from service for the elimination.

An even better option is to employ a block of rows (or columns) and assign
these blocks in a cyclic or interleaved manner. The advantages of this approach
are that no processor retires early and that BLAS2 and BLAS3 routines can
be used because of the blocking. All processors see roughly the same amount
of work, proportioned to 1/P, although the first processors work less, e.g.,
after they compute their first block.

Finally, a combination of row and column block interleaved storage of ma-
trix A can be pursued. In this case we can imagine a mapping of b size blocks
of A in a cyclic manner (of cycle length C') onto a mesh-type parallel computer
consisting of P = P, x P, processors. Schematically, this arrangement is shown
in figure 9.4.

This mapping can be established by setting

Si = F(’L,b) and Sj = F(], b),
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Stage 1a P P P, | eee |R P
':
Stage 1b i P P, Py | eoe [Ra]| [A ]!
|

Stage 2a P | P, | Ps eeoe |Rg P
il il sl
sugead [ 7] [72] [P ] eoe [A] [%]
|

[ ]
[ ]
[ ]
Stage m-th a P P, Ps eee |Rg B
"  —/ — — —
Stagem-thb 1| Pt P, P3| eeoe [P P |
|

Computing in Parallel

Figure 9.3: Schematic of communication (a) and computation (b) pattern
when a matrix is partitioned with an interleaved layout.

with i =0,...,n—1and j =0,...,n—1 (N being the size of A) where the
value of the (S;, S;) pair defines the processor in the mesh architecture. The
function F' is defined as

function F'(i, b)
floor (i/b) modulo C

return;

where we assume that we deal with a square matrix and that C? = P. In the
example of figure 9.4, we have P = 4 and C' = 2. We have also assumed here
for simplicity that the computer (mesh array) is symmetric but that may not
be advantageous in practice, i.e, we may want to have P, > P, that is more
rows than columns. The advantage of this approach, in addition to its good
parallel performance, is that it can make use of the BLAS3 routines, which
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Figure 9.4: 2D block interleaved mapping of a 16 x 16 matrix on P = 4 processors;
here b = 2 and C' = 2, and the processor id used above is given by S; + 25; + 1.
Here S; and S; have the values 0 or 1.

provide high efficiency. The main steps of computing pivots, send-ahead, and
parallel work on each processor that we presented earlier are also utilized here.

The plot of figure 9.5 shows a graphical representation of LU decomposition
using BLAS3. The new entries to be computed are in the shaded area in
the right lower corner of the matrix A. The submatrix A that is currently
shown to be computed has a size b x b, i.e., the size of the block of rows
and columns. This implementation is included in ScaLAPACK software for
distributed computers, see

www.netlib.org/scalapack

9.1.4 Parallel Back Substitution

We first present an ideal algorithm for parallel back substitution that provides
a lower bound for its computational complexity. Although the lower bound
may be unattainable given hardware constraints, it provides us with the “best-
case” scenario that the algorithm can provide given unrestricted resources. By
understanding the concept which yields the lower bound result, we hope that
after incorporating relevant constraints we will obtain a reasonable algorithm.
The ideal algorithm for parallel back substitution is based on a divide-and-
conquer algorithm for inverting triangular matrices.

Let us consider the lower triangular matrix L, which we decompose into
submatrices of half size L; Ly and L3 as follows

Lo
L_[LZ L?,]-
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Figure 9.5: LU decomposition of a matrix A using 2D block interleaved storage.
BLAS2 and BLAS3 can be effectively employed in this algorithm.

0 be computed next

We assume that n = 2* and that & is an integer. This is shown schematically
in the plot of figure 9.6.

It is clear that Ly and Ly are themselves lower triangular matrices. We can
prove that

1 Lt 0
L=
~L;'L,L7' L3t

and take advantage of this equation to set up a divide-and-conquer algorithm
for inverting the matrix L of size n.

The main steps are shown in the following pseudo-code:
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Figure 9.6: Decomposition of a lower triangular matrix L. Matrices L and Lg are
also lower triangular.

Function InvTriangular(L)
If size(L)= 1 return 1/L
Else
Set L1 top triangular part of L
Set L2 square part of L
Set L3 bottom triangular part of L

InvL1 =InvTriangular(L1)
InvL3 =InvTriangular(L3)
UpdateL2 = - InvL3 * L2 * InvL1

Invll 0
return L =
Updatel2 InvL3
Endif

We can perform the inversion of L; and Ly in parallel, so the cost C is
C|InvTriangular(n)] = C[InvTriangular(n/2) + C[mam(n/2)],

where by maxm we denote the matrix-multiply. The ideal time for this matrix-
multiply (assuming we employ n® processors) is O(logn), and thus the ideal
cost for inverting triangular matrices is O(log®n). Unfortunately, this cost is
impossible to realize in practice.

The O(log”n) time estimate is based on the equation

t(n) =t(n/2) + O(logn).
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We set k = log, n, and thus
tk) = tlk—1)+ O(k)

= t(k—2)+0(k)+0(k—-1)

= t()+0k)+O0(k—-1)+...+1

w ~ O(k*/2) ~ O(log’n).

Note that the O(logn) ideal estimate for matrix multiply is based on the fact
that all entries of the product matrix can be computed in parallel on P = n3
processors, and then summed up using a fan-in algorithm which is O(logn).
This is of course unattainable at the moment since the n = 1000 size (ideally
parallel) matrix-multiply would require more than one billion processors, more

than what we currently have on this planet!

Q

We now discuss how the back substitution step Ux = y, which is also a
triangular system, can be performed in parallel. The algorithm proceeds by

computing first
b7(zn—1)
as

Tp =

while all other unknowns are computed from

Vi = n—1,...1:

D D
T: = 3 aii Tit1 Y Uz,z+1xz+1 uz,z+2xz+2 - UinTin
T i—1 - )
Qg U

where u;; denote entries of the matrix U.

The most obvious implementation of this is the following:

forj=n,1
forj=i+4+1,n
bi = bz — ui]’.’L'j
endfor
T = bi/wi
endfor

This assumes that U is stored by rows, which are accessed in the innermost
loop 7. More specifically, the matrix U is stored in blocks of rows assigned to
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each processor. The corresponding operation employs the BLAS1 ddot routine,
which implements the inner (dot) product of the innermost loop. However, if
U is stored in blocks of columns per processor, then the (ij) loop of the ddot
product implementation above has to be reversed as follows

forj=mn,1
zj = bj/uj;
fori=1,7—1
bi = bz — ui]'.'L'j
endfor
endfor

Here the innermost loop (i) generates updates of the numerators for the final
answer x; while the outer loop (j) sweeps the matrix U by columns starting
from right to left. This is sometimes referred to as left-looking access of U,
and it involves dazpy operations in the innermost loop.

Software

(o)  Putting it into Practice
Suite

Prior to presenting a parallel implementation of Gaussian elimination, we
will first discuss one new MPI function not introduced previously: M PI_Bcast.
This function allows us to distribute to all processes within the communicator
an identical piece of data. In the case of Gaussian elimination, M PI_Bcast
will allow us to “broadcast” to all processes a particular row being used in
the elimination. We will now present the function call syntax, argument list
explanation, usage example and some remarks.

MPI_Bcast:

Function Call Syntax

int MPI_Bcast(

void* buffer /* infout */,
int count /* in */,
MPI_Datatype datatype /* in */,
int root /* in */,

MPI_Comm comm /* in */)
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Understanding the Argument List

e buffer - starting address of the send buffer.

e count - number of elements in the send buffer.

e datatype - data type of the elements in the send buffer.
e oot - rank of the process broadcasting its data.

e comm - communicator.

Example of Usage

int mynode, totalnodes;
int datasize; // number of data units to be broadcast
int root; // process which is broadcasting its data

MPI_Init(&argc,&argv);

MPI_Comm_size (MPI_COMM_WORLD, &totalnodes) ;
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

// Determine datasize and root

double * databuffer = new double[datasize];

// Fill in databuffer array with data to be broadcast

MPI_Bcast (databuffer,datasize,MPI_DOUBLE,root ,MPI_COMM_WORLD) ;

// At this point, every process has received into the
// databuffer array the data from process root

e Each process will make an identical call of the M PI_Bcast function. On
the broadcasting (root) process, the buffer array contains the data to be
broadcast. At the conclusion of the call, all processes have obtained a
copy of the contents of the buffer array from process root, see figure 9.7.
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databuffer databuffer
Process O Xoo | Xog | @=vrmmeemmeannen - Xoo | Xoz
Process 1 B [ Xoo [ Xoz
Process 2 | Xoo [ Xo1

Figure 9.7: M PI_Bcast schematic demonstrating a broadcast of two data objects
from process zero to all other processes.

We now present a parallel implementation of Gaussian elimination with
back substitution. As a model problem, we solve for the interpolating poly-
nomial of the Runge function (see section 3.1.4) by forming a Vandermonde
matrix based on the Chebyshev points. Recall that the goal is to find the
polynomial coefficients by solving the system Ax = b where A is the Vander-
monde matrix and b is the function of interest evaluated at the interpolation
points.

To better explain the code, we have broken the entire program into six
parts, labeled part one through part six. The six parts break down the code
as follows:

1. Part 1 - MPI initialization/setup and initial memory allocations.
2. Part 2 - Generation of the matrix rows local to each process.

3. Part 3 - Gaussian elimination of the augmented matrix.

4. Part 4 - Preparation for back substitution.

5. Part 5 - Back substitution to find the solution.

6. Part 6 - Program finalization and clean-up.

For each part, we will first present the code and then present a collection
of remarks elucidating the salient points within each part.

|Part 1 - MPI initialization]
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#include <iostream.h>
#include <iomanip.h>
#include "SCmathlib.h"
#include "SCchapter3.h"
#include<mpi.h>

void ChebyVandermonde(int npts, double *A, int row);

// Global variable to set size of the system
const int size = 10;

int main(int argc, char *argv[]){
int 1i,j,k,index;
int mynode, totalnodes;
double scaling;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD, &totalnodes) ;
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

int numrows = size/totalnodes;
double **A_local = new double*[numrows];
int * myrows = new int[numrows];

Remark 1: Notice that for this program we use a global constant variable to
denote the size of the matrix system. By placing the variable declaration out-
side of the main function, the declaration is global to all functions (including
the main function).

Remark 2: We have made the assumption that the size of the matrix is evenly
divisible by the number of processors we are using. If this were not the case,
we would have to properly take this into account by having different numbers
of rows per processor.

|Part 2 - Generation of matrix rows|

/* PART 2 x/
double * xpts = new double[sizel;
ChebyshevPoints (size,xpts);
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or (i=0; i<numrows;i++)q{
A_local[i] = new double[size+1];
index = mynode + totalnodesx*i;
myrows [i] = index;
ChebyVandermonde (size,A_localli],index);

// Set-up right-hand-side as the Runge function
A_local[i][size] = 1.0/(1.0+25.0*xpts[index]*xpts[index]);

delete[] xpts;

double * tmp = new double[size+1];
double * x = new doublel[size];

Remark 1: Notice that we allocate for each row (size + 1) columns. Recall
that in Gaussian elimination it is necessary for us to act on the right-hand-side
(the vector b) as we do the row reduction. We can eliminate the extra com-
munication cost that would come by handling the right-hand-side separately
by forming an augmented matrix as shown in figure 9.8.

A
N A

Y

o

—— N+] —>

Figure 9.8: The augmented matrix consists of the original matrix A with the right-

han

plis

d-side vector b appended as an additional column.

As you will see in the next section, all row reduction steps will be accom-
hed on (size + 1) columns so that both the matrix and right-hand-side are

updated properly.
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Remark 2: To keep track of which rows a processor possesses, we store the
indices of the rows in an array named myrows. This array contains numrows
entries, each entry denoting for which rows in the matrix the processor is
responsible.

|Part 3 - Gaussian elimination|

/* PART 3 */
/* Gaussian Elimination of the augmented matrix */
int cnt = 0O;
for(i=0;i<size-1;i++){
if (i == myrows[cnt]){
MPI_Bcast(A_locallcnt],size+1,MPI_DOUBLE,
mynode ,MPI_COMM_WORLD) ;
for(j=0;j<size+l;j++)
tmp[j] = A_locallcnt][j];
cnt++;
}
else{
MPI_Bcast(tmp,size+1,MPI_DOUBLE,i%totalnodes,
MPI_COMM_WORLD) ;
}
for(j=cnt; j<numrows; j++){
scaling = A_local[j][il/tmp[i];
for(k=1i;k<size+1;k++)
A_locall[jl[k] = A_localljl[k] - scaling*tmpl[k];
}
}

Remark 1: We use the integer variable cnt to keep track of how many rows
on each processor have been reduced. Recall that each processor has its own
copy of the variable cnt, and hence on each processor it can be used to keep
track of what is the active row.

Remark 2: We have chosen the cyclic distribution discussed earlier. A
schematic of the communication and computation pattern for a four processor
run executed on a size = 12 system is shown in figure 9.9.

Part 4 - Preparation for back substitution

/* PART 4 x/
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Figure 9.9: Schematic of the communication and computation pattern for a four
processor run executed on a size = 12 system. Iterations: =0,7 =1, and ¢ =9 are
shown. The letter i denotes an idle row, while a ¢ denotes a computing row.
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/* On each processor, initialize the value of x as equal to
the modified (by Gaussian elimination) right-hand-side if
that information is on the processor, otherwise initialize
to zero.

*/

cnt = 0;
for(i=0;i<size;i++){
if (i==myrows [cnt]){
x[i] = A_locallcnt] [size];
cnt++;
}
else
x[i] = 0;

Remark: To accomplish the back substitution, we first initialize the solution
by setting the array entry xz[i] equal to the last column of the augmented
matrix (which contains the modified right-hand-side) for those rows for which
a processor is responsible, and equal to zero for all rows for which a particular
processor is not responsible.

|Part 5 - Back substitution

/* PART 5 */
/* Backsolve to find the solution x */
cnt = numrows-1;
for(i=size-1;i>0;i—-){
if (cnt>=0){
if (i == myrows[cnt]){
x[i] = x[i]1/A_locallcnt]l[i];
MPI_BcaSt(X+i,1,MPI_DOUBLE,mynode,MPI_COMM_WORLD);
cnt——;
}
else
MPI_Bcast(x+i,1,MPI_DOUBLE,i%totalnodes,MPI_COMM_WORLD) ;
+
else
MPI_Bcast(x+i,1,MPI_DOUBLE,i%totalnodes,MPI_COMM_WORLD) ;
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for(j=0; j<=cnt; j++)
x[myrows[jl] = x[myrows[j]] - A_locallj][il*x[i];

if (mynode==0) {
x[0] = x[0]1/A_locallcnt][0];
MPI_Bcast(x,1,MPI_DOUBLE,O,MPI_COMM_WORLD) ;

}

else
MPI_Bcast(x,1,MPI_DOUBLE,O,MPI_COMM_WORLD) ;

Remark 1: Observe that the variable cnt is initialized to (numrows — 1) and
is decremented in this loop. Recall that we want to traverse back up the rows
(hence the name back substitution). As a processor computes the solution for
a row for which it is responsible, it then broadcasts the result to all the other
Processors.

Remark 2: Why do we check for ent > 07 If you examine this loop carefully,
you will notice that at some point the variable cnt is equal to —1. This occurs
when all the solution components on a processor have been computed. We
must verify that cnt > 0 prior to attempting to access myrows|cnt], otherwise
we are performing an illegal memory access, and hence the process may fail.
We know, however, that once a processor’s value of cnt is equal to —1 it
merely needs to obtain the updated values from other processors, and hence
we can immediately proceed to an M PI_Bcast call to obtain the solution from
another processor.

Remark 3: Observe in the M PI_Bcast arguments that we use pointer arith-
metic for updating the address which is passed to the function. Recall that x
is a pointer (and hence has as its value an address). The expression (z + i) is
equivalent to the expression &z[i], which can be read as “the address of the
array element x[i].”

Part 6 - Program finalization

/* PART 6 x/

if (mynode==0) {
for(i=0;i<size;i++)
cout << x[i] << endl;
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delete[] tmp;

delete[] myrows;

for(i=0;i<numrows;i++)
deletel[] A_locallil;

delete[] A_local;

MPI_Finalize();

void ChebyVandermonde(int npts, double *A, int row){
int 1i,j;
double * x = new double[npts];

ChebyshevPoints (npts,x) ;

for(j=0; j<npts; j++)
A[j] = pow(x[row],j);

deletel] x;
}

Remark: We conclude the program by printing the solution from the first
processor (mynode = 0). If we were not to put the if statement there, all
processors would print the solution.

9.1.5 Gaussian Elimination and Sparse Systems

Many linear systems that arise from discretization of partial differential equa-
tions, as we have seen in chapters 6 and 7, are sparse and more specifically
bandeded. Assuming that we deal with symmetrically banded systems of
(semi)-bandwidth m, we can modify accordingly the (ijk) loops of table 9.1



9.1. Gaussian Elimination 647

to account for this sparsity. For example, the kij loop is modified as follows:

fork=1,n—-1
fori =k + 1, min(k + m,n)
Ui = az'k/akk
for j = k+ 1, min(k + m, n)
aij = @ij — likQg;
endfor
endfor
endfor

The computational complexity of this algorithm is significantly less on a serial
computer than on a parallel computer. The operation count for LU decom-
position is about O(nm?) for an n x n matrix with bandwidth m and for the
backsolve is O(nm). However, on a parallel computer a straightforward im-
plementation of the above algorithm would result in large inefficiencies. For
example, the row- (column-) blocked interleaved scheme discussed earlier be-
comes very inefficient when m < P, where P is the total number of processors
as only m processors are effectively used. Clearly, the case with m = 1, i.e.,
the tridiagonal system, is the most difficult case and needs to be handled
differently; we study this case next.

9.1.6 Parallel Cyclic Reduction for Tridiagonal Systems

Several algorithms have been developed over the years for the parallel solution
of tridiagonal linear systems including recursive doubling [82], cyclic reduction
[13], domain decomposition [90], and their many variants. Here we present the
cyclic reduction method, which has been one of the most successful approaches.

The main idea of cyclic reduction is to group the unknowns in even and
odd-numbered entries, just like in black/red Gauss-Seidel (see section 7.2.4),
and successively eliminate the odd-numbered entries. Most of the operations
in this process can be done in parallel. We present here some details by
considering a specific small system in order to illustrate how we manipulate
the equations.

Let us consider the tridiagonal system

a;T;_1 + bZIL'Z + Ciliy1 = E 1= ]_, Lo, (98)

where a;, b;, ¢;, and F; are given, and we also assume that n = 2P — 1. If
n # 2P — 1 then we add additional trivial equations of the form z; = 0,
i=n+1,...,2P —1.
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The key idea is then to combine linearly the equations in order to eliminate
the odd-numbered unknowns

X1,T3,T5,...,Tp

in the first stage. We then re-order (i.e., re-number) the unknowns and repeat
this process until we arrive at a single equation with one unknown. Upon solu-
tion of that equation, we march backwards to obtain the rest of the unknowns.
To do this we combine the equations in triplets.

Next, we demonstrate this for the case of n = 7 = 23 — 1 unknowns for
which we have three triplets. We start by forming the first triplet from the
first three equations. To this end, we multiply by the parameters s, B2, 72 to
get

agbll'l + eC1Ty = C¥2F1
Baasry 4+ Pabexe + Pacoxs = PoFl
V2032 + Yob3ws + yac3wy = Yo F.

In order to eliminate x; and x3, we add the equations and choose:

fr=1
aigby + Baas =0
Boca  +  yab3 = 0.

The resulted equation (sum of the above three equations) is

\(0@01 + Baby + 72613)J$2 + Y2C3 T4 = 92F1 + [oFy + Yo F3 .

132 C2 FZ

Similarly, combining again equations, i.e., the third, fourth and fifth equations
obtained from equation (9.8) we form the second triplet from which we obtain

Qa3 T + (e + Baby + Yaas) T4 + YaCs T6 = aaFs + SaFy + v4F5,
\A/—/ ~ ~ v N ~~ 7

a4 (;4 ¢4 ]3‘4

and ay, B, and 4 are determined from
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Finally, for the third triplet we obtain, as before, the only surviving equation
G674 + bsws = Fp,

where the parameters ag, (g, V6 involved in the definition of ag, 136 and ﬁ’ﬁ are
determined by solving

agbs + Bsag = 0
Bece + by =

We see that the three resulted equations also form a tridiagonal system, i.e.,

821‘2 + 621'4 = FA12 (99)
d4l’2 + b4£U4 + 641’6 = F4 (910)
&6.%'4 + 661.6 = FG. (911)

We can repeat the same elimination process as before, i.e., first multiply by
a;, B:l and fy; respectively the above equations and choose

agby + Byis = 0
Bits+ vsbs =
that leads to only one equation
ayry = Fy.

Using back substitution, after we obtain x4 from above, we can compute s
from the reduced equation (9.9) and zg from equation (9.11). Finally, we use
the original equations to obtain z;, x3, 5 and z7.

In summary, we perform the following steps:

1. Compute
(a2, B2, 72)
(au, Ba,y 7a)
(s, B6,76)
2. Compute

(627 627 FQ)
(&47 847 é47 Fﬁl)
(dfi: [;67 ﬁ‘G)
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3. Compute
(014, 547 74)
(a3, FY)

4. Solve for x4, o, x6, T1, 23, T5 and x7.

Remark: There exist non-singular matrices for which the above method will
terminate early with the solution. The number of levels used above is the
worst-case scenario. For some matrices, the depth of reduction can be trun-
cated due to the solution being obtained for one of the variables. Immediately
back-substitution can begin.

The operation count is @(13n) multiplications compared to O(5n) for the
standard LU decomposition. However, this is the serial work but many of the
above computations can be done in parallel. For example, let us assume that

we have
n—1

2

processors and we store each triplet on one processor. The work for eliminating
the odd-numbered unknowns can be done in parallel, and at the end of this
stage each processor holds one reduced equation. To proceed, the processors
need to exchange data. This can be done by nearest neighbor communications,
e.g., P, will receive data from P; and Pj, P; will receive data from P; and Ps,
and so on. This implies that about half of the processors (e.g., all the odd-
numbered Py, Ps...) will remain idle. After (p — 1) reduction stages (where
n = 2P — 1) only one processor will solve the final equation. However, the rest
of the processors are not quite retired yet, as in the back substitution they will
all be called on duty again!

pP=

Software

(o)  Putting it into Practice
Suite

We now present implementations of cyclic reduction for tridiagonal sys-
tems. Due to the complex nature of the indexing involved, we will present
both the serial and then the parallel version. As pointed out earlier, the serial
version of this algorithm is rarely used because it is actually more expensive
than standard LU; we present it however because it is easier to understand
the complex indexing in the serial setting without the additional complexity
of the parallelization.
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As a model problem, we solve for the system given in figure 9.10. Notice
that the matrix A is of the form found in discretizations of the Laplace’s
equation with second-order finite difference schemes.

A X = b
_ -
1
2
3
X =
N-1

Figure 9.10: Tridiagonal system used as a model problem for cyclic reduction.

To better explain the code, we have broken the entire program into multiple
parts. The serial code is broken down into three parts as follows:

1. Part 1 - Memory allocation and generation of the matrix A.
2. Part 2 - Cyclic reduction stages.
3. Part 3 - Cyclic reduction back substitution to recover the solution.

For each part, we will first present the code and then present a collection of
remarks elucidating the salient points within each part.

Serial

#tinclude <iostream.h>
#include <iomanip.h>
#include '"SCmathlib.h"

const int size = 15;

void main(){
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int 1i,j,k;
int index1,index2,o0ffset;
double alpha,gamma;

Part 1 - Memory allocation and generation of matrix

/* Part 1 */
double * x = new doublelsize];
for(i=0;i<size;i++)

x[i] = 0.0;
double * F = new double[size];
double ** A = new doublex[size];

for(i=0;i<size;i++){
A[i] = new double[size];
for(j=0;j<size;j++)
Afi1[j1 = 0.;
F[i] = (double)i;
}

Al0][0] = -2.0; A[0][1] = 1.0;
Alsize-1][size-2] = 1.0; A[size-1][size-1] = -2.0;

for(i=1;i<size-1;i++){
Ali]1[i] = -2.0;
Ali][i-1] = 1.0;
Ali][i+1] = 1.0;

+

Remark 1: Observe that in this program we use more memory than necessary.
Because we know that we are operating on a tridiagonal system, the memory
required is greatly reduced from that which would be needed in A were full.
Here we allocate memory as if A is a full matrix; we leave it as an exercise to
modify this program to use only the necessary amount of memory.

Part 2 - Cyclic reduction

/* Part 2 */
for(i=0;i<log2(size+1)-1;i++){
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for(j=pow(2,i+1)-1;j<size;j=j+pow(2,i+1)){
offset = pow(2,1);

indexl = j - offset;
index2 = j + offset;
alpha = A[j]l[index1]/A[index1] [index1];

gamma = A[j][index2]/A[index2] [index2];
for(k=0;k<size;k++){

A[jl1[k] -= (alphaxA[index1][k] + gamma*A[index2][k]);
}
F[jl -= (alpha*F[index1] + gammaxF[index2]);

Remark 2: In the above code section, the first for loop (over i) iterates
through the levels of reduction which occur, while the second for loop (over j)
indexes which rows at each level are to be acted upon. Notice that both loops
and the variables index! and index2 are based on powers of two.

|Part 3 - Back substitution]

/* Part 3 */
int index = (size-1)/2;
x[index] = F[index]/A[index] [index];

for(i=log2(size+1)-2;i>=0;i--){
for(j=pow(2,i+1)-1;j<size;j=j+pow(2,i+1)){
offset = pow(2,1);
indexl = j - offset;
index2 = j + offset;

x[index1] Flindex1];
x [index2] Flindex2];
for(k=0;k<size;k++){
if(k!= index1)
x[index1] —-= A[index1][k]l*x[k];
if(k!= index2)
x[index2] -= Al[index2] [k]*x[k];
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x[index1]/A[index1] [index1];
x[index2]/A[index2] [index2] ;

x [index1]
x [index2]
}
+

for(i=0;i<size;i++){
cout << x[i] << endl;

3

deletel] x;
delete[] F;
for(i=0;i<size;i++)
delete[] A[il;
delete[] A;
+

Remark 3: Once the full reduction has occurred, we must traverse back up
the reduction tree. Note that the two for loops accomplish this traversal.

Parallel

We now present the parallel version of the serial code presented above.
We assume that given P processors, we will accomplish cyclic reduction on
a matrix of size 2182 (P¥D+1 _ 1 This amounts to associating three rows per
processor during the first stage. The parallel code is broken down into four
parts as follows:

1. Part 1 - MPT initialization and both memory allocation and generation
of the matrix A.

2. Part 2 - Parallel cyclic reduction stages.

3. Part 3 - Parallel cyclic reduction back substitution to distribute necessary
information.

4. Part 4 - Solution for the odd rows for which each process is responsible.

For each part, we will first present the code and then present a collection of
remarks elucidating the salient points within each part.

|Part 1 - MPI initialization]
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#include <iostream.h>
#include <iomanip.h>
#include "SCmathlib.h"
#include<mpi.h>

int main(int argc, char *argv[]){
int i,j,k,size,index;
int indexl1,index2;
int mynode, totalnodes;
double alpha,gamma;
const int numrows = 5;
MPI_Status status;

MPI_Init (&argc,&argv);
MPI_Comm_size (MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

size = (int) pow(2,log2(totalnodes+1)+1)-1;

double ** A = new doublex[numrows];
for (i=0;i<numrows;i++){
A[i] = new double[size+1];
for(j=0;j<size+1;j++)
A[iJ[3]1 = 0.0;

if (mynode==0) {

Afo][0] = -2.0; A[0][1] = 1.0;
A[1J[0] = 1.0; A[11[1] = -2.0; A[1]1[2] = 1.0;
A[2]1[1] = 1.0; A[2][2] = -2.0; A[2][3] = 1.0;

}
else if (mynode==(totalnodes-1)){
index = 2*mynode;

A[0] [index-1] = 1.0; A[0][index] = -2.0;
A[0] [index+1] = 1.0;

index = 2*mynode+1;

Al1][index-1] = 1.0; A[1][index] = -2.0;
Al1] [index+1] = 1.0;

A[2] [size-2] = 1.0; A[2][size-1] = -2.0;
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}
else{
for(i=0;i<3;i++){
index = i + 2*xmynode;

Ali] [index-1] = 1.0;
A[i] [index] = -2.0;
Ali] [index+1] = 1.0;

}
}

for(i=0;i<3;i++)
A[i] [size] = 2*mynode+i;

int numactivep = totalnodes;
int * activep = new int[totalnodes];
for(j=0; j<numactivep;j++)

activep[jl = j;

for(j=0; j<size+1l;j++){
A[31[3j1 = A[01[j1;
A[41[31 = A[21[j1;

}

Remark 1: Just as in the parallel Gaussian elimination code, we augment the
matrix A with the right-hand-side (appending A with an extra column). This
helps to minimize the communication by allowing us to communicate both the
row and right-hand-side information simultaneously.

Part 2 - Cyclic reduction

/* Part 2 */

for(i=0;i<log2(size+1)-1;i++){
for(j=0; j<numactivep;j++){
if (mynode==activep[j]){
indexl = 2*mynode + 1 - pow(2,1i);
index2 = 2*mynode + 1 + pow(2,1i);
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A[1][index1]1/A[3] [index1];
A[1][index2]/A[4] [index2];

alpha
gamma

for(k=0;k<size+1;k++)
A[1]1[k] -= (alphaxA[3][k] + gammaxA[4][k]);

if (numactivep>1){
if (j==0){
MPI_Send(A[1],size+1,MPI_DOUBLE,activep[1],0,
MPI_COMM_WORLD) ;
+
else if (j==numactivep-1){
MPI_Send(A[1],size+1,MPI_DOUBLE,activep[numactivep-2],
1,MPI_COMM_WORLD) ;
+
else if (j42==0){
MPI_Send(A[1],size+1,MPI_DOUBLE,activep[j-11],
1,MPI_COMM_WORLD) ;
MPI_Send(A[1],size+1,MPI_DOUBLE,activep[j+1],
0,MPI_COMM_WORLD) ;
+
else{
MPI_Recv(A[3],size+1,MPI_DOUBLE,activep[j-1],0,
MPI_COMM_WORLD,&status) ;
MPI_Recv(A[4],size+1,MPI_DOUBLE,activep[j+1],1,
MPI_COMM_WORLD,&status) ;

numactivep = 0;
for(j=activep[1];j<totalnodes; j=j+pow(2,i+1)){
activep[numactivep++]=j;
}
}

Remark 2: The communication is accomplished through a series of M PI_Send
and M PI_Recv calls. Each processor is communicating (either sending or re-
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ceiving) from at most two other processors. To keep track of whom is to
be sending/receiving, we maintain an active processor list within the integer
array activep. A communication schematic for cyclic reduction using seven
processors is given in figure 9.11.

Figure 9.11: Cyclic reduction communication pattern for seven processor case.

|Part 3 - Back substitution]

/* Part 3 x/

double * x = new double[totalnodes];
for(j=0; j<totalnodes;j++)
x[j]l = 0.0;

if (mynode==activep[0]){
x[mynode] = A[1][sizel/A[1][(size-1)/2];
}

double tmp;
for(i=log2(size+1)-3;i>=0;i--){
tmp = x[mynode];
MPI_Allgather (&tmp,1,MPI_DOUBLE,x,1,MPI_DOUBLE,
MPI_COMM_WORLD) ;
numactivep = 0;
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for(j=activep[0]-pow(2,1);j<totalnodes;j=j+pow(2,i+1)){
activep[numactivep++]=j;

3

for(j=0; j<numactivep;j++){
if (mynode == activep[jl1){
x[mynode] = A[1][size];
for(k=0;k<totalnodes;k++){
if (k!=mynode)
x[mynode] -= A[1][2¥k+1]*x[k];
}
x [mynode] = x[mynodel/A[1] [2*mynode+1];
}
}
}

tmp = x[mynode];
MPI_Allgather (&tmp ,1,MPI_DOUBLE,x,1,MPI_DOUBLE,
MPI_COMM_WORLD) ;

Remark 3: A schematic for the backward solve communication is given in
figure 9.12. Notice that is varies slightly from that of the forward part of
the reduction. After a processor has found the solution for its row and has
communicated that information to the appropriate processors, it is no longer
active. This can be observed in figure 9.12 - observe that processor P3; no
longer has things to compute in the second and third levels.

Remark 4: We use the M PI_Allgather command so that at any given level
all the processors have the available solution up to that point. This all inclusive
communication could be replaced by M PI_Send/M PI_Recv pairs where only
those processors requiring particular information would be updated.

Part 4 - Solving for odd rows

/* Part 4 x/
for (k=0;k<totalnodes;k++){
A[0] [size] -= A[0][2xk+1]1#*x[k];
A[2] [size]l -= A[2] [2¥k+1]1*x[k];
}
A[0] [size] = A[0] [size]/A[0] [2*mynode];
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N
VRN »~ =

Figure 9.12: A schematic for the backward solve communication when seven pro-
cessors are used.

Al1] [sizel
A[2] [sizel

x [mynode] ;
A[2] [size] /A[2] [2*mynode+2] ;

delete[] activep;

for(i=0;i<numrows;i++)
delete[] A[il;

delete[] A;

deletel] x;

MPI_Finalize();

Remark 5: The program concludes with each processor computing the solu-
tion for the odd rows for which it was responsible. If the total solution vector
were needed on all processors, M PI_Allgather could be used to collect the
solution on each processor. Note that some additional logic would be neces-
sary to properly take into account the overlap in row distribution (i.e., both
processor zero and processor one solve for the solution of matrix row number
three) as shown in figure 9.13.
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[ Assigned to Processor 0

| |
I I
| -

| | Matrix Row 1 | :
I I
| |
: | Matrix Row 2 | :

: —————————————— 7 _:___'

|| | Matrix Row 3 | !

I__| ________________________ | I

'| Matrix Row 4 | I

|

|

| Matrix Row 5 | |

|

|

|

|

Figure 9.13: Overlap in row solutions for two processor case.

9.2 Cholesky Factorization

A special case of the LU decomposition for a symmetric positive-definite matrix
A can be obtained in the form

A=LL".

Here, the matrix U is equal to the transpose of L due to symmetry. There are
many possibilities for L but this factorization is unique if we require that all
diagonal elements of L be positive. We note that in this case L is different than
the matrix we obtain in the LU decomposition, where all diagonal elements
are equal to one.

Instead of following the standard LU decomposition, we can obtain explic-
itly the elements ¢;; of L by setting:

aip G2 ... Gip 0y O 4T by ... Cor ]

612 622 €22 Zn2

apl -+ .. Qpp gnl gn? Enn L Znn_

Next, we equate elements on both sides to obtain

2 2
ay = Uyl and  ay =04
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for the entire first column (i = 1,...,n), and similarly for the other columns.
The following pseudo-code summarizes the Cholesky algorithm:

forj=1n

i—1
_ 2
bij = \[ai; — > Gy
k=1

fori=j7+1,n

7—1
aij — 2= lirljk

b =
’ ljj

endfor
endfor

Remark 1: The Cholesky factorization algorithm is stable and thus it does
not require pivoting [25].

Remark 2: The Cholesky algorithm requires about half the memory and
about half the operations of the LU decomposition.

Remark 3: The positive-definite property is important in obtaining the /;;
without partial pivoting. In fact, partial pivoting can destroy the symmetry
of a matrix A.

Remark 4: In some cases an incomplete or approximate Cholesky decompo-
sition is required, e.g. as a preconditioner in accelerating the convergence of
iterative solvers, see section 9.4.2. This is achieved by simply filling in with
zeros the entries of L, which have corresponding zero entries in the original
(presumably sparse) matrix A.

9.3 QR Factorization
and Householder Transformation

The LU factorization is not the only way of factorizing a matrix A. The House-
holder transformation we present here is the basis of an efficient factorization
of a general matrix

A =QR,
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where Q is an orthogonal matrix and R is an upper triangular matrix. We have
already studied in section 2.2.9 how to achieve such a QR decomposition by
orthogonalizing vectors via the Gram-Schmidt procedure, but the procedure
we present here is always stable and much more efficient.

We start by considering the following important operation in scientific com-
puting:
e How to take a full vector and produce a special vector with only one of
its entries non-zero.

This is accomplished efficiently in terms of the (orthogonal) Householder ma-
trix, which is defined by

WWT

H=1-2 Yw # 0.

wlw
Of particular interest is the vector
ae; = (,0,0,...0)T

which can be created from an arbitrary vector x if the vector w is computed
appropriately. To this end, we set w such that:

a
0
T
Hx:(I—QW;V >x: 0| =ae.
W''W .
_0_

The solution to this problem is simple, and it is given by
w =X+ sign(z1) - [[x]|2€1,

where x; is the first entry of the vector x. This transformation from H x —
(a,0,0,...,0)T is called Householder transformation.

First, we summarize the algorithm that describes the Householder trans-
formation in the following pseudo-code:

Ty = max {|z1], |2, ..., |Tal}
fork=1,n

Wk = T[Ty
endfor
a = sign(w)[w} + w3 + ...+ w?]
w; = w; +«
Q= —Qy,

1/2
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Then, the desired vector is (a, 0,0, ...0)". The number of operations is propor-
tional to O(n), that is it takes linear work only to accomplish this important
operation.

Example: Consider the vector

then z,, = 3, and the intermediate values of the components of w are:

1 2 1
wy ==; wy=—; w3z=—1.
1 37 2 37 3
Also, the intermediate value of « is:
1 22 )
o=+ §+§+(—1) = 1.2472.

The updated values are then
1 2
and
a=—1.2472 -3 = —3.7416

while the desired vector is

—3.7416
Hx = 0
0

Remark 1: The matrix-vector product with a Householder matrix

WWT

H=1-2
wlw
is only an O(n) operation compared to the O(n?) for a general matrix-vector
product. This can be achieved from the relation

T

Hx=x-fw(w'x),

where 57! = w’'w/2 is a scalar. We note that the right-hand-side is computed
within one loop
ri=x;— By w,i=1.,....n



9.3. QR Factorization and Householder Transformation 665

where v = wlx is also scalar.

Clearly, we do not need to construct explicitly H in this case — that cost
would lead to an O(n?) operation!

To accomplish the QR factorization of a square general n x n matrix A, we
consider its columns and apply successively the Householder transformation
in order to zero out the subdiagonal entries of each column. We do this in
(n — 1) stages, just like in LU decomposition.

Stage 1: We consider the first column of A and determine a Householder
matrix H; so that:

an an

91 0
H1 —

QAn1 0

To determine H; we simply need to apply the Householder transformation
algorithm to obtain w; of length n. After the first stage we overwrite A by
A, where

k k
a1 Qg ... Qqp
0 a3,
A= : =HA,
* *
0 any ... ap,

which has all new elements (denoted by star) after the first column.

Stage 2: Next we consider the second column of the updated matrix
A= A1 = HlA

and take only the part below the diagonal, to obtain

*
*

a 0
32

* R
H, : - : ’

*

Ao 0

which yields a vector wy of length (n — 1). This vector defines uniquely the

Householder matrix
T
WoW
H,=1-2——2=.
W3 Wo




9.3. QR Factorization and Householder Transformation 666

Unlike H;, here we first need to “inflate” HJ to Hy and then overwrite A by
H2A1, where
I ... 0
a0 ).

Stage k: In the k-stage of the QR procedure we produce a vector wy, of length
(n — k+ 1) by solving

a’,;k (6793
H: altJ.rl,k _ 0
ay 0
Here again, we overwrite A by
Ay =HAp

and subsequently we “inflate” H, as

I
=[]

Remark 2: The efficiency of the Householder algorithm is based on the effi-
cient multiplication
Apyr =Hip - Ay,

which should not be performed explicitly but rather using the O(n) matrix-
vector product algorithm we presented above; that is we compute

(I — BwWn_xWy_1)|ak]

where
Bil = Wg—k : ank/27

and ay; denotes the columns of Ay, with j = k+1,...,n—k. The determination
of Hj requires (n — k) operations because the unknown vector w is of (n — k)
length.

Throughout the following section, the subscript for the vector w will denote
the current size of the vector; hence w,,_; denotes the vector of size (n — k).
In the algorithm to be presented, the notation w;; denotes the it" entry of the
vector wj.
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After a total of (n—1) stages we obtain an upper triangular matrix R with
diagonal elements the a; (k = 1,...,n) and the other entries computed from:

Tij = Qij — YWik

where n >4, j > k, and
n
Y = ﬁzwikazj
i=k

B = Wy gr Woks1)/2

We note that the above formulas compute all the entries above the diagonal
but also the r,, entry.
Then, the matrix R is:

&y T2 T13 ... e T1n
Qo T23 ... e Ton
Q3 ... C T3n

O Qp—1
Tnn

This matrix can be constructed by forming an equivalent Householder matrix
H;, of size n at each stage from the Hj which has order (n — &k + 1). To this

end, we simply set
| Ly O
H, = l O H; ] ’

and we also compute:
Ay =H; A,

with
A1 =A

The upper triangular matrix is then
R=A,,.=H, A, ,=...=H, H, ».. HA.
We can invert the above equation if we set
Q" =H,_ H,...H,

then
Q'=q"
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because Hy, are all orthogonal. Thus, Q- R = QQ"A = A = QR. We can
now compute the orthogonal matrix Q, i.e., Q = Hfo .. .Hgfl .

We have thus obtained a QR decomposition of an n X n matrix A, similar
to the Gram-Schmidt procedure but at reduced cost, since we are operating
with shorter and shorter vectors in each stage. We first provide the pseudo-
code for the Householder QR decomposition and then we will compute the
exact operation count. The pseudo-code below returns only the value of R.
The matrix Q can be formed from the above equation using the matrix H;
formed by its vector w from the Householder transformation.

Householder Algorithm

Begin Loop: k =1,...,n— 1 (number of stages)

*
*
a 0
k+1,k .
eSolve H, i = . (Obtain w,, 1)
*
ayp 0
Tk = QU

eCompute B~ =W} . Wy ki1/2
Zero ag:t=k+1,...,n
Begin Loop: j =k+1,...,n
7 =0
Begin Loop:q=Fk,...n
Vi =5+ BWeraq;
End Loop
Begin Loop:i=Fk,...,n
Tij = Q5 — VjWik
aij = Tij
End Loop

End Loop
End Loop



9.3. QR Factorization and Householder Transformation

Example: Let us consider the 3 x 3 Hilbert matrix

1

L 3

and apply the Householder QR algorithm.

e In the first stage (k = 1) we solve

T T
H1 5 - O
1
L 3 | L 0]
and also r;; = a; = —1.1666 and
2
h= wiwy

Then, for 7 = 2, we calculate:

Yo = Blwi1a12 + Wa1ags + wsiass] = 0.5274

[ 2.1666 |

0.5

| 0.3333 |

1 17

2 3

1 1

3 4

1 1

4 5
= Wi =
= 0.3956.

and thus
12 ‘= T12 12 — YoWi1 = —0.6429
929 = T22 A22 — YW1 = 0.0696
a3z := T32 = Q32 — 7Y2W31 = 0.0795.

In the next iteration, j = 3, we calculate similarly:

v3 = Blwiais + waaes + wiass] = 0.3615

and thus

13 ‘= T13

13 — Y3Wi1 = —0.4500

a23 (= T93 = Q23 — 7Y3W21 = 0.0692

a3z ‘= T3z = Q33 — 7Y3W31 — 0.0795.

669
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Also, we have that as; = as; = 0.

e In the second stage (k = 2) we solve
H;[O.OG%] _ l ay ] s w, — l 2.3095] .
0.0795 0 1.0000
Also, 199 = a9 = —0.1017, and
B=2/(wl-wy) =0.315759.
Then, for 7 = 3, we calculate:

v3 = Blwyass + wspass] = 0.0756
To3 = (23 — Y3Wa2 = —0.1053

T3z = azz — Y3wszz = 0.0039,

where we note that as3 and a3z are the updated values, which were modified
in the first stage.

At the conclusion of this example, we now have the resulting R matrix
of the QR decomposition, and we also have the Householder transformation
vectors w from which we can form Q.

Computational Cost: The computational complexity of the QR decompo-
sition, as described above, is determined by the cost of computing the matrix
H; which is O(n — k), and also of computing Ay from A, = HyA,_; which
requires O((n — k)?) operations. Thus, the combined cost is

(S - (n—1)(n)  ©-1)m2n-1) n’

]g(n—k)—irkz::l(n—kf: 5 + ; ~

Calculating more carefully the constant factor and accounting for both addi-
tions and multiplications we have

4 2
(@) <§n3> QR versus O (5713) LU decomposition .

Remark 3: After we obtain the QR factorization of A we can solve a linear
system Ax = b as follows

Ax=b=QRx=b = Q'QRx = Qb = Rx = Q'b,

which is an upper triangular system and can be solved by back substitution.
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Remark 4: It can be shown that the QR decomposition based on the House-
holder transformation is always stable, see [47].

Remark 5: The QR-Householder decomposition is about twice as expensive
as the LU decomposition and it also expands the bandwidth of a sparse matrix
A. In contrast, the LU decomposition preserves the bandwidth but it may be
susceptible to numerical instabilities as demonstrated earlier. However, even
with partial pivoting the LU decomposition is more efficient than the QR
decomposition for large matrices A.

Remark 6: (Givens Rotations) A third way of obtaining the QR decompo-
sition of a matrix A (in addition to Gram-Schmidt and Householder) is to
employ the Givens rotation matrix

R(0) = [
which is orthonormal. By setting

. 2] [ 7]

cosf sinf
—sin@ cosf@ |’

we obtain
f=—" . sinfh=——2
cosf) = ——; = ——
Based on this idea we construct a general rotation matrix

1

cosf sind O
R(0;14,5) =
—sinf cosf
O
1

that can be employed to zero out one entry in each iteration cycle instead of
a column as in the Householder transformation. However, the Givens rotation
is twice more expensive than the Householder and four times more expensive
than the LU. It is not used in solving square linear systems but it is used in
solutions of [east squares linear systems and also in eigensolvers.

Remark 7: The stability of the Householder method (also the Givens rota-
tion) is due to the fact that the Q matrix is a product of orthogonal matrices,
which have condition number equal to one.
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9.3.1 Hessenberg and Tridiagonal Reduction

We now consider the transformation of a matrix A to an upper triangular
which also has the first lower diagonal non-zero. Specifically, this matrix has
the form

&
1

and it is called upper Hessenberg matriz.

The Householder transformation procedure can also be used to obtain this
for general matrices. If the matrix is also symmetric then the resulted matrix
is tridiagonal.

The reduction algorithm involves (n — 2) stages of elimination. We want
to obtain

H.=H-A-HT,

where the matrix H = H,,_5 - H,_;...H;. These are Householder matri-
ces, which are computed from zeroing out sub-columns of A and its updated
versions, i.e.,

[, o0
Hl_lo H’{]’

where

21 Qg

asq 0

* _
Hj = ,

an1 0

and
A, =H,AHT

1=y 1

and soon ...

Clearly, A has a new first column with a;; # 0 and as; # 0 but all other
entries are equal to zero.
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Example: We consider again the 3 x 3 Hilbert matrix

DN | =

W =

DN | =

W =

1

4

W =

=~ =

o] =

673

which we transform into an upper Hessenberg matrix in one (3-2) stage. Since
A is also symmetric we expect a tridiagonal matrix He.
e In the first stage (k = 1) we solve

1 «
H? 2
1 1 - 0
3
which gives
[ 22019
W2 =1 0.6666

and o = —0.6009.
We then obtain the new entries of A using a;; = a;; — yw;:

— (NN

W = DO | —

> =

=~ = wl| =

(S

1

H.=H,AH = | 0

(1

0

L O

0

0

—0.8321

0

—0.5547

—0.5547 0.8321

1.0

—0.6009

—0.8321

—0.5547

—0.5547 0.8321

= | —0.6009 0.5231

0.0 —0.0346

0.0

—0.0346

0.0103
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Remark 1: The solution of the Hessenberg linear system
H.-x—=b

can be obtained with Gaussian elimination with partial pivoting, and it is
guaranteed to be stable [94]. The computational complexity of this is O(n?)
including the partial pivoting cost.

Software
(o)  Putting it into Practice
Suite

We now present a function for computing the upper Hessenberg matrix
given a matrix A. The function takes as input the matrix A and upon com-
pletion returns the upper Hessenberg matrix in place of the matrix A.

void Hessenberg(SCMatrix &A){
int 1i,j,k,q;
double beta,gamma;
int N = A.Rows();
SCVector *x = new SCVector(N),
*w = new SCVector(N);

for(k=0;k<N-2;k++){
A.GetColumn(k,*x,k+1);
A(k+1,k) = HouseholderTrans (xx,*w);
beta = 2.0/dot (N-k-1,*w,*w) ;
for(i=k+2;i<N;i++)
A(i,k) = (xw) (i-k);
for (j=k+1;j<N; j++){
gamma = 0.0;
for(q=k+1;q<N;q++)
gamma += beta*(*w) (q-k-1)*A(q,j);
for(i=k+1;i<N;i++){
A(i,j) = A(i,]) - gammax(*w) (i-k-1);
}
}
for(i=0;i<kN;i++){
gamma = 0.0;
for(q=k+1;q<N;q++)
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gamma += betax(xw) (q-k-1)*A(i,q);
for (j=k+1;j<N;j++){
A(i,j) = A(i,j) - gammax(*xw) (j-k-1);
}
}
}

delete x;
delete w;

Remark 2: Observe that we pass the reference to the matrix A (denoted by
the “SCMatrix &A” in the argument list.) We do this because we want to
replace the values in A with the new upper Hessenberg matrix. If we were to
omit the “&” and hence pass by value, the modifications made to the matrix
A within the function would be lost when the function returns to the calling
program.

Remark 3: Inside the function, we dynamically allocate two new SCVectors
and assign them to the two pointers w and z. To use the “( )” operator
associated with the SCVector class, we first use the unitary operator ‘*’ to
retrieve the object to which the pointer points. Hence, the expression (*w)
yields the object to which the pointer w points. The extra parentheses around
this expression are used to guarantee that the “*’ is carried out before the “(')”
operator.
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9.4 Preconditioned Conjugate Gradient Method
- PCGM

9.4.1 Convergence Rate of CGM

We have already introduced the Conjugate Gradient Method (CGM) in section
4.1.7 for the linear system
Ax =b.

By defining the residual of the k'" iteration
Tk = b — AXk,
the solution and search directions are computed from

Xg+1 = X+ Py (9.12)
Pey1 = Tyt 1 Piby (9.13)

while the residual can also be computed iteratively, i.e.,
Tep1 =T — akApk. (914)

We can derive a three-term recurrence formula by substituting in equation
(9.12) the vector p,, from equation (9.13) and also using the residual definition,
to obtain

X1 = (14 7)xk + (b — Axg) — VXp_1

where we have defined

B
’Yk = .
Q1

This is sometimes referred to as the Rutishauser formula. Symmetry and or-
thogonality together lead to the familiar three-term magic formula as we have
seen many times in this book!

We have mentioned in section 4.1.7 that the CG method is equivalent to
minimizing a properly defined quadratic form. In fact, it can be proved that
if s is the exact solution, then the conjugate gradient iterate x; minimizes the
norm ||s —x||4 over the Krylov subspace of dimension k. This space is defined
based on powers of A with the orthogonal directions, i.e.,

Kr(A,p) = span {p, Ap,A’p..., A" 'p}.
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The Rutishauser formula is similar to the Lanczos three-term formula, see
section 10.3.6, and so CGM and Lanczos are related - they both use the same
Krylov subspace and have three-term recurrence formulas. More specifically,
a tridiagonal matrix T; can be constructed for CGM from

T, = P"AP.

Here P = RD !, where D is a diagonal matrix containing the magnitudes
of residuals. Also, R is the product of two matrices, the first formed by the
columns of the orthogonal search directions p; while the second is a bidiagonal
matrix with 1’s in the diagonal and the scalars 8; above the main diagonal.

With regards to convergence, Reid [76] has observed that in practice CGM
produces very good answers even before the total number of iterations reaches
n, where n X n is the size of the symmetric positive-definite matrix A. We
recall that the fundamental theorem on conjugate directions, stated in section
4.1.7, guarantees that the exact solution will be achieved after n iterations.
More specifically, if matrix A has only m < n distinct eigenvalues then con-
vergence will be achieved in m iterations. Round-off and corresponding loss of
orthogonality is responsible for deviation from the theory, although round-off
is not as severe as in the Lanczos method, as we discuss in section 10.3.6.

In practice, we always use a stopping criterion for convergence instead of
having a loop with n iterations. To this end, it is important that the tolerance
€ in the convergence test be proportional to the relative reduction of the initial
residual or in some cases to be normalized with the right hand-side, e.g.,

[rrsllz = €l bl

Here € &~ 10~ where d is the number of digits of desired accuracy. The com-
putation of || rgy1 [|°= (rry1,Try1) Tequires no extra work as this quantity is
used in the numerator of the formula for ;. Also, we note that the residual
|| rx41 ||]2 may not be decreasing monotonically although the solution error
|| s — xx || decreases monotonically. This is because in the minimization pro-
cedure the error of the solution is targeted directly but not the residual. Direct
minimization of the residual is more common in solvers for non-symmetric sys-
tems, as we discuss in section 9.5. However, the A~ '-residual norm, (r” A 'r),
decreases monotonically.

Because of finite arithmetic, the convergence rate of CGM is controlled by
the condition number of matrix A, which we denote by k3(A). Specifically,
the following estimate holds, (see [26, 46])

S —X
ez
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where

Ao ko(A) — 1
ka(A) = and (4)

y=t—.
)\min K9 (A) +1

For large values of k3 we have that v — 1, and thus the number of itera-

tions for convergence of CGM is proportional to y/k2(A). For example, for the
Poisson equation discretized on an N-by-/N grid using second-order finite dif-
ference discretization (see chapter 6) we have that ro(A) oc N2, and thus the
number of iterations is proportional to N. The computational cost of CGM is
then similar to SOR assuming for the latter an optimum relaxation parameter.

9.4.2 Preconditioners

In order to accelerate the convergence of CGM we employ preconditioners, see
also 7.2.8. That is, we transform the linear system Ax = b to

M 'Ax=M"'b

by multiplying by the preconditioner (non-singular) matrix M. We have al-
ready seen in section 7.2.8 some of the desired properties of the preconditioner:
It should be:

e Spectrally close to matrix A so that the condition number
ke (M 1TA) < Ky(A)
and also,
e Inexpensive to invert since the solution of Mx = b will be required.

In addition, since we consider here a symmetric positive-definite matrix A,
then M has to also be symmetric and positive-definite.

The objective is to modify the original CG algorithm only slightly in or-
der to “correct” the search directions but not to increase the computational
complexity significantly. To this end, we first need to symmetrize the precon-
ditioned system as M~ A is not a symmetric matrix. We then express M in
terms of its eigenvectors and eigenvalues, i.e.,

M = VAV" = M2 = VA2V,
Next we multiply M™'Ax = M~'b by M2 to arrive at

(Mfl/QAMfl/Q) (MI/ZX) — Mfl/Zb



9.4. Preconditioned Conjugate Gradient Method - PCGM 679

= By =1f where B=M"Y2AM""/2,

and,
y=MY?>x and f=M""?p.

The above defines the new system (i.e., B,y, f) to be solved using the original
CGM. We note that

M_1/2BM1/2 — M_1/2(M_1/2AM_1/2)M1/2 — M—IA

and thus B and M™'A are similar so they have the same eigenvalues.

The following PCG algorithm is derived by applying the standard CG

algorithm to the new system
By =f,

as defined above. The important thing is that we do not need to explicitly
take the square root of M — this would have been costly!

Preconditioned Conjugate Gradient Algorithm

o [nitialize:

— Choose xg = rg = b — Ax,
— Solve Mry =ry = p, =T

e Begin Loop: for k=1,...

o (f.ka rk)
Qe = —_—
(pk7 Apk)
Xk4+1 = Xk + akpk
rk+1 = r, — akApk
Mry 4 = Tjt1
If (f'k+1a I'Ic+1) <e
If (rk+1, rk+1) S €
return
Bk) — (f.k4~»17 rk+1)
(rk7 rk)
Pi+1 = Tpi1 + BePy
endfor

e FEnd Loop
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Remark 1: The stopping criterion is based on the actual residual r and
not on the modified residual r. However, checking the latter first saves some
computational time as it is readily available while the former requires explicit
calculation.

The question is still open as to what is the best preconditioner since in most
cases it is problem-dependent. For matrices with diagonal elements that are
very different in magnitude, using

M= diag( ai1, a2, . . -aann)

is very effective as it reduces the condition number of B by a factor of n of its
minimum value [26]. This is called diagonal scaling and corresponds to Jacobi
preconditioning. An extension of this idea is to build M as a block-diagonal
matrix out of block submatrices of A. Similarly, the Gauss-Seidel method
can be used as preconditioner but it needs to be symmetrized first. To this
end, the symmetric SOR (SSOR) we presented in section 7.2.6 can be a more
effective block preconditioner.

Diagonal scaling fails if all diagonal elements are equal such as in the ma-
trices resulted from finite difference discretization of diffusion problems on
uniforms grids, see chapter 7, or other Toeplitz type matrices (see next sec-
tion). One of the most effective and popular preconditioners for such problems
is based on the incomplete Cholesky factorization of the matrix A. We
have already presented the Cholesky factorization of A in section 9.2, which
is feasible for symmetric positive-definite matrices, like the ones we consider
here. The problem with Cholesky is that it fills-in the zero entries of A in
the LLT decomposition, and in some cases it may totally destroy the possible
sparsity initially present in A.

To obtain an incomplete Cholesky factorization of A we can simply sup-
press the fill-in entries, i.e., zeroing out the entries corresponding to the zero
entries of the original matrix. Alternatively, to avoid computing these entries
in L and simply place zeros at the corresponding locations, we can modify the
Cholesky algorithm so that

e if a;; # 0, compute [;;,
o elseif [;; = 0.

We note that the two approaches are not the same as can be easily verified in
the following example. Let us consider the (4 x 4) matrix
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4 -1 -1 0

-1 4 0 -1

A= -1 0 4 -1
0 -1 -1 4

We first perform a standard Cholesky decomposition, which yields the follow-
ing triangular matrix

2.0000 0 0 0
L — —0.5000  1.9365 0 0
¢ | =0.5000 —0.1291  1.9322 0

0 —0.5164 —-0.5521 1.8516

We note that the (3,2) entry which was initially zero in A has become non-zero
in L.. The first version of incomplete Cholesky would then be:

2.0000 0 0 0

L, — —0.5000  1.9365 0 0
' —0.5000 0 1.9322 0
0 —0.5164 —0.5521 1.8516

However, the second version, where we don’t compute the [;; at all if the
corresponding a;; = 0, is

2.0000 0 0 0

Ly — —0.5000  1.9365 0 0
’ —0.5000 0 1.9365 0]’

0 —0.5164 —0.5164 1.8619

which is different than L;; in the entries (3,3), (4,3) and (4,4).

In practice, we can replace the second code statement above by setting a
threshold value on the Cholesky entry as follows

o clseif |l”| S € then lij =0 5

so that only significantly large entries are retained. Clearly, the incomplete
Cholesky decomposition can be performed only initially, i.e., before the itera-
tion loop, and store M = LL” or simply store L.

Remark 2: While Cholesky factorization of a symmetric positive-definite
matrix is always feasible, incomplete factorization may not be possible in some
cases. This complication may manifest itself as a square root of a negative
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number to compute the [;. In this case, a positive large number should over-
write the appropriate element, which can be chosen either arbitrarily or as a
sum of the adjoint diagonal entries or even as a sum of absolute values of the
rest of the entries in the row; the latter will ensure diagonal dominance.

Remark 3: Domain decomposition is another way of preconditioning partial
differential equations. The idea is to break up the domain of interest to subdo-
mains, which can also overlap, and subsequently solve the PDE approximately
but fast in each of the subdomains. This can be also done independently for
each domain in an embarrassingly parallel fashion. The preconditioner matrix
M is constructed by piecing together the solutions to subproblems leading to
a block diagonal M if the subdomains do not overlap or a product of block
diagonal submatrices if the subdomains overlap.

9.4.3 Toeplitz Matrices and Circulant Preconditioners

A special preconditioner is very effective for Toeplitz matrices, the circulant
matrix. Topeplitz matrices have constant diagonals and are encountered in
signal processing and in a wide range of other problems which are invariant in
time and space. A circular matrix C is a Toeplitz matrix but it is entries also
satisfy

Cr = Ck+4n

where n x n is the size of the matrix C.

A general Toeplitz matrix has (2n — 1) independent entries, which are de-
termined by the first row and column. A general circulant matrix on the other
hand has only n independent entries. Assuming symmetry, then a Toeplitz
matrix has n independent entries (the first column) whereas a circulant ma-
trix has [n/2]+1. More clearly, the differences between a general Toeplitz and
a general circulant matrix are shown below.

ap a_ . . A1—_p
a1 ao a_q
A= . ay Ao . . s
. a_q
Qp—1 ap Qo

and
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Co Cpn—1 . . C1
€1 Co Cp-1
C = C1 Co
Cn—1
Cn—1 . . C1 Co

Assuming we want to solve the system Ax = b where A is a symmetric
Toeplitz matrix, the suggestion, first proposed in [83], is to precondition it
with a corresponding circulant matrix. To this end, we recall that in most
applications the main diagonal and its neighbors are strongly dominant and
thus we can use them to construct an appropriate circulant preconditioner
C. The entries ¢; = a; appear both next to the main diagonal but also in the
extreme corners as shown above. It turns out that these relatively large entries
control the eigenspectrum of C™'A, which in turn controls the convergence
rate of PCGM. The rest of the eigenvalues are clustered around one; this is
demonstrated in homework problems, see 10.7. Typically, we copied a few
of the main diagonals from the Toeplitz matrix onto the circulant matrix
but of course not all! In the homework problems of section 9.8 we ask you
to experiment with different circulant preconditioners. As you can see, the
speed-up is substantial!

9.4.4 Parallel PCGM

The parallelization of the preconditioned conjugate gradient is fairly straight-
forward. Assuming that the matrix A has been distributed by rows across
processes, the conjugate gradient component of the algorithm can be accom-
plished with only four MPI calls: three calls to M PI_Allreduce to accomplish
dot products, and one call to M PI_Allgather. We can eliminate one of the
reduction calls if we decide to use the dot product of the residual with the
modified residual for the stopping criterion. Depending on the choice of pre-
conditioner, however, additional MPI calls may be required to accomplish the
preconditioning. In the case of a diagonal preconditioner, no MPI calls are nec-
essary since diagonal preconditioning can be accomplished locally on all rows
contained in a process. Other preconditioners such as incomplete Cholesky
may require additional MPI calls, the cost of which should be considered when
determining what preconditioner to use. In figure 9.14 we provide a schematic
of the iterative part of the parallel PCG algorithm with annotations denoting
what BLAS and MPI operations should be used. Note that in figure 9.14 we
use the modified residual for the stopping criterion, and hence we only have
three MPI calls.
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for(k=0;k<dim(A);k++){

BLAS ddot Operations

Parallel Vector Dot Product

o= c/dot(p,z) =

X=X+ o*p -

BLAS daxpy Operation

r=r-o*z

BLAS daxpy Operation

Solve Matrix System

Parallel Vector Dot Product

if(sqrt(d) < tolerance) break;
B =dlc

—| BLAS daxpy Operation |

gather(p) -

c=d
}

Parallel Gather |

Figure 9.14: Iterative part of the preconditioned conjugate gradient (PCG)
algorithm.

We now present an MPI program demonstrating the precon-

Software ditioned conjugate gradient method with a diagonal precondi-
@ tioner. As a sample problem, we will solve (using second-order
Suite finite differences) the following equation:

d? :
;(53) — et @0y (1) = —sin(2mw) (4n° — et ET0D) (9.15)
x

in the interval z € [0,1] with boundary conditions u(0) = u(l) = 0 and
constants ¢; = 20.0 and ¢, = 1000.0. The exact solution is u(z) = sin(2nx).

We have chosen the constants ¢; and ¢y so that there is a large disparity in
the values along the diagonal. This will allow us to see the difference between
conjugate gradient (CGM) and preconditioned conjugate gradient (PCGM)
with a diagonal preconditioner.

Since we have chosen to use a second-order finite difference method to
approximate the derivative operator, we expect that the error should decrease
by a factor of four when we double the number of grid points used. In figure
9.15 we show a log-log plot of the Ly error versus the number of grid points
used. The magnitude of the slope of the line is approximately two, consistent
with the fact that our approximation is second order.
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Figure 9.15: Lo error versus the number of grid points for the PCGM example
defined in equation (9.15).

In figure 9.16 we plot the inner product of the residual (r,r) for both the
CGM and the PCGM. As predicted, PCGM converges much faster than the
standard CGM.

e,
o *y
*

., CGM

s
"5 PCGM
DD

I 1 1 I 1
0 10 20 30' 40 50 60
Iteration

Figure 9.16: Inner product of the residual for both the CG and PCG methods
applied to the PCGM example defined in equation (9.15).

To better explain the code, we have broken the entire program into four
parts, labeled part one through part four. The four parts are as follows:

1. Part 1 - MPI initialization, initial memory allocation, and generation of
grid and right-hand-side vector.
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2. Part 2 - Memory allocation and generation of the matrix A.
3. Part 3 - PCGM initialization.
4. Part 4 - PCGM main iteration loop.

For each part, we will first present the code and then present a collection of
remarks elucidating the salient points within each part.

|Part 1 - MPI initialization]

#include <iostream.h>
#include <iomanip.h>
#include "SCmathlib.h"
#include<mpi.h>

const int rows_per_proc = 40;
const double cl1 = 20.0;

const double c2 = 1000.0;
const double tol = 1.0e-14;

int main(int argc, char *xargv[]){
int 1i,j.,k;
int mynode, totalnodes, totalsize, offset;
MPI_Status status;
double sum,local_sum,c,d,alpha,beta;
double ** A, *q, *x, *grid;

double *p,*z,*r, *mr;

MPI_Init(&argc,&argv);

MPI_Comm_size (MPI_COMM_WORLD, &totalnodes) ;
MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

totalsize = totalnodes*rows_per_proc;

new double[totalsize];

new double[rows_per_proc];
= new double[rows_per_proc];
mr = new double[rows_per_proc];

H N O
I
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x = new double[rows_per_proc];
q = new double[rows_per_proc];
grid = new double[rows_per_proc];

double dx = 1.0/(totalsize+1);
for (i=0;i<rows_per_proc;i++){
grid[i] = dx*(1l+rows_per_proc*mynode+i) ;
qli] = -dx*dx*sin(2.0*M_PIxgrid[i])*
(-4.0%M_PI*M_PI - c2exp(cl*(grid[i]l-0.5)*(grid[i]-0.5)));
x[i] = 1.0;
}

Remark 1: We have four global variables in this program. The variable
rows_per_proc gives the number of rows per processor. In this program we have
decomposed the matrix by associating rows to processors. The two constants
cl and c2 are specific to the problem we are solving. The last global constant
variable tol specifies the tolerance to which we should converge.

Remark 2: Observe that with the exception of the array p all other arrays
need only be of size rows_per_proc and not of size totalsize. Each processor
need only maintain its part of the residual, modified residual and solution
vector; however, each processor must have a copy of the entire p vector.

Part 2 - Memory allocation and generation of matrix

/* Part 2 */

A = new doublex[rows_per_proc]l;
for(i=0;i<rows_per_proc;i++){
A[i] = new double[totalsize];
for(j=0;j<totalsize;j++)
Alil[j] = 0.0;

if (mynode==0) {
A[0][0] = 2.0 + dxxdx*c2*exp(cl*(grid[0]-0.5)*(grid[0]-0.5));
A[0][1] -1.0;
for(i=1;i<rows_per_proc;i++){
A[i][i] = 2.0 + dx*dx*c2*exp(cl*(grid[i]-0.5)*
(grid[i]l-0.5));
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ATi][i-1]
Ali][i+1]
X

I
| 1
=
o O

}
else if (mynode == (totalnodes-1)){
Alrows_per_proc-1] [totalsize-1] = 2.0 +
dx*dx*c2*exp(cl*(grid[rows_per_proc-1]-0.5)*
(grid[rows_per_proc-1]-0.5));
Alrows_per_proc-1] [totalsize-2] = -1.0;
for(i=0;i<rows_per_proc-1;i++){
offset = rows_per_proc*mynode + 1i;
Ali] [offset] = 2.0 + dx*dx*c2xexp(clx(grid[i]-0.5)*
(grid[i]-0.5));
A[i] [offset-1] = -1.0;
A[i] [offset+1] = -1.0;

}
}
elseq{
for(i=0;i<rows_per_proc;i++){
offset = rows_per_proc*mynode + 1i;
Ali] [offset] = 2.0 + dx*dx*c2xexp(cl*(grid[i]-0.5)*(grid[i]-0.5));
A[i] [offset-1] = -1.0;
A[i] [offset+1] = -1.0;
}
}

Remark 3: We break the matrix setup into three cases. We have to carefully
handle the first and last processors because they contain the first and last

rows, respectively.

|Part 3 - PCGM initialization|

/* Part 3 */
offset = mynodexrows_per_proc;

for(i=0;i<totalsize;i++)
plil = 1.0;

for(i=0;i<rows_per_proc;i++){
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r[i] = q[i] - dot(totalsize,A[i],p); //calculation of residual
mr[i] = r[i]/A[i] [offset+i]; //calculation of modified residual
}

local_sum = dot(rows_per_proc,mr,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DQUBLE,MPI_SUM,
MPI_COMM_WORLD) ;

c = sum;

MPI_Allgather (mr,rows_per_proc,MPI_DOUBLE,p,rows_per_proc,
MPI_DOUBLE,MPI_COMM_WORLD) ;

Remark 4: We have chosen our initial vector as the vector of all ones. Because
we have to calculate the initial residual, we require that all processors have the
entire initial guess. Notice that we temporarily use the p array to accomplish
this instead of allocating a new vector. Because p is not in use until after the
modified residual is calculated, we can use the allocated space with no adverse
effect.

Part 4 - PCGM main iteration loop

/* Part 4 */
for (k=0;k<totalsize;k++){

for(i=0;i<rows_per_proc;i++)
z[i] = dot(totalsize,A[i],p);

local_sum = dot(rows_per_proc,z,ptoffset);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,
MPI_COMM_WORLD) ;

alpha = c/sum;

for(i=0;i<rows_per_proc;i++){
x[i] = x[i] + alpha*p[offset+i];
r[i] = r[i] - alphaxz[il;

}



9.4. Preconditioned Conjugate Gradient Method - PCGM 690

/* Preconditioning Stage */
for(i=0;i<rows_per_proc;i++)
mr[i] = r[i]l/A[i] [offset+i];

local_sum = dot(rows_per_proc,mr,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,
MPI_COMM_WORLD) ;

d = sum; //contains inner product of
//residual and modified residual

local_sum = dot(rows_per_proc,r,r);

MPI_Allreduce(&local_sum,&sum,1,MPI_DOUBLE,MPI_SUM,
MPI_COMM_WORLD) ;

//sum now contains inner product of residual and residual
if (mynode == 0){

cout << k << "\t" << "dot(mr,r) = " << d << "\t";
cout << "dot(r,r) = " << sum << endl;

if (fabs(d) < tol) break;
if (fabs(sum) < tol) break;
beta = d/c;

for(i=0;i<rows_per_proc;i++)
z[i] = mr[i] + beta*p[i+offset];

MPI_Allgather (z,rows_per_proc,MPI_DOUBLE,p,rows_per_proc,
MPI_DOUBLE,MPI_COMM_WORLD) ;

c = d;

deletel[] p;
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deletel] z;

delete[] r;

delete[] mr;

delete[] x;

delete[] q;

deletel[] grid;
for(i=0;i<rows_per_proc;i++)

delete[] A[il;
delete[] A;

MPI_Finalize();

Remark 5: Observe that we only require four MPI calls: three M PI_Allreduce
and one M PI_Allgather. The three reductions are used to obtain the inner
product across all processors; the Allgather is used so that all processors have
the updated value of p.

Remark 6: Because we are using diagonal preconditioning, no additional
communication is required for the preconditioner. If we were to use incomplete
Cholesky as a preconditioner, additional communication similar to what was
accomplished in the parallel Gaussian elimination solver would have to be
used. The factorization would be accomplished before the iteration loop, and
only the cost of two parallel back solves would be incurred within the iteration
loop.

9.5 Non-Symmetric Systems

The conjugate gradient algorithm assumes that the matrix A is symmetric
and positive-definite. To deal with the non-symmetric system

Ax=Db

we need to come up with new solvers or transform the non-symmetric system
into a symmetric one as follows

ATAx=A"b (CGNR).

Clearly, this transformation produces a symmetric positive-definite matrix
B = ATA and thus we can apply PCGM to it. This is called the CGNR
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(conjugate gradient normal residual) algorithm and it is an acceptable method
for matrices which are well-conditioned, although we have to pay extra to in-
clude matrix-vector multiplies with both AT and A. On the other hand, the
condition number of B is the square of the condition number of A and thus
for ill-conditioned matrices an extremely large number of iterations is required
for convergence.

We now compare the CG and CGNR algorithms by considering what quan-
tity is that we minimize in these minimization-based solvers. We have already
seen in section 4.1.7 that the solution with CG is equivalent to minimizing the

quadratic form

Pog(x) = %(x, Ax) — (b, x).

We can re-write the above form in terms of the error e = x — s, where s is the
exact solution, as follows

2Pcg(x) = (x,Ax) —2(x, As) + (s, As)
= e’Ae

= llef]a-

The above simply states that searching for the solution using the CG al-
gorithm is equivalent to minimizing the error in the A-norm. In contrast,
the CGNR algorithm minimizes the residual in the Ls-norm, and thus the
corresponding quadratic form is

2PCGNR(X) = ||b—AX||2

(b — Ax,b — Ax)
= (Ax,Ax)—2(b,Ax) + (b,b).

Therefore, the minimization of Pogyr corresponds to applying CG to the

system
Bx=f

where B= ATA and f= A”b.

There are several conjugate residual algorithms in the literature, which are
based on the minimization of the residual in different forms. A significant
difference between such algorithms and the CG for symmetric systems is that
the loss of symmetry results in the loss of the three-term magic recurrence
formula, which keeps things sparse and leads to efficiency both in memory and
cost. Instead of two or three vectors, in the non-symmetric conjugate algo-
rithms we typically need to store the entire sequence of conjugate directions,
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which is prohibitively expensive for very large n. However, in practice a subset
of the last k vectors may work or a restart of the algorithm after k steps can
also be used.

In the following, instead of presenting all variants of conjugate gradient
residual algorithms we concentrate on one that makes use of an iterative pro-
cedure to simplify the original matrix, namely the Arnoldi iteration. Based
on this procedure, we can solve, relatively efficiently, non-symmetric systems
as we demonstrate below. We can also compute eigenvalues of non-symmetric
matrices, as we discuss in section 10.5 in the next chapter.

9.5.1 The Arnoldi Iteration

The Arnoldi method is an orthogonal projection onto a Krylov subspace I,
for non-symmetric matrices A (n x n); usually m < n. It reduces the matrix
A to a Hessenberg form, that is it accomplishes what Householder does for the
entire matrix A but here we have the option of only going half-way. Arnoldi,
who introduced this algorithm in the early 1950s [3], suggested that it leads
to good approximations for some of the eigenvalues of A even if we terminate
prematurely! In practice, it is a useful technique for obtaining the eigenvalues
of large sparse matrices. It is useful to think of this as an extension of Lanczos
method (see section 10.3.6) to non-symmetric matrices. It has the same itera-
tive and approximate form - although a separate version of Lanczos exists for
non-symmetric matrices [79].

Let us begin by considering the similarity transformation
A=VT'HV,
where we define the matrix V or V,, with orthonormal columns
Vo= [vi|val|...|vm],

and H,, is the Hessenberg matrix (m xm). We also define the extended matrix
H,, of dimension (m + 1) x m, as follows:

[ h11 h/12 . hlm
hoi haoy S hom,

hm,m— hmm
1 hm+1,m J
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and we can write
] _ T
Hm - Hm + h’m—l—l,mvm—l—lema

where v, 11, defined as orthonormal, i.e., it has unit norm.

The Arnoldi iteration process satisfies:
AV,, =V, H,, (9.16)
and correspondingly, the m'™ column of this equation reads:
Av,, = hipvi + hom Ve + oo F B Vi + Bt m Vit 1,

which is an (m+1)-term recurrence formula, instead of the three-term formula
in symmetric systems.

The basic algorithm of Arnoldi iteration implements the above formula in
a straightforward manner, as follows:

Basic Arnoldi Algorithm

Initialize: Choose a vector xg = vy = ol
Begin Loop: for j=1,2,...m
fori=1,...,7
hij = (Av;,vi)
endfor
w; = Av; — Y1 hijv;
hivis =l w;j 2
Vit = Wj/hji
End Loop:  endfor

The above algorithm is basically the standard Gram-Schmidt orthogonaliza-
tion procedure applied to the Krylov space K,,.

We note that in each iteration we compute the entire 5 column, including
the entry hji;; below the main diagonal. In particular, if hj;; = 0 then
the Arnoldi iteration stalls, but that is in fact good news! This is because
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such a breakdown usually implies that we have achieved convergence and the
iteration should be terminated. If we want to continue, we can restart the
process with a new orthonormal vector v;, which can be selected arbitrarily.

The implementation of the Arnoldi algorithm given above although straight
forward it suffers from round-off errors, just as is the case of the basic Gram-
Schmidt algorithm. To this end, we can apply the more stable modified Gram-
Schmidt orthogonalization procedure to the Krylov space to come up with a
better code for the Arnoldi iteration, as follows:

Modified Arnoldi Algorithm

Initialize: Choose xg = v = =2—

Begin Loop: forj=1,...,m

hivrg =l w |2
Vit = W/hji
End Loop:  endfor

This is a much more stable algorithm but even this version needs further
treatment sometimes, so an extra orthogonalization may be required occasion-
ally. For robustness, we can apply the Householder algorithm periodically for
extra orthogonalization.

Software

(o)  Putting it into Practice
Suite
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Below we present a function for computing the Arnoldi decomposition using
the modified algorithm presented earlier. The function takes four arguments:
the integer value m denoting the dimension of the Krylov space on to which
we are projecting, a SCMatrix A of size N x N on which the decomposition
is to be accomplished, and two SCMatrix variables H and V for storing the
resulting H and V from the decomposition. Note that H must be a SCMatrix
of size (m+1) x m and V must be a SCMatrix of size N x (m+1). The initial
direction vector x defaults to the first unit vector.

void ModifiedArnoldi(int m, const SCMatrix &A, SCMatrix &H,
SCMatrix &V){
SCVector v(A.Rows()),w(A.Rows());
v.Initialize(0.0);
v(0) = 1.0;

V.PutColumn(0,v) ;

for(int j=0;j<m;j++){

w = Axv;

for(int i=0;i<=j;i++){
V.GetColumn(i,v);
H(i,j) = dot(w,v);
w=w - H(i,j)*v;

}

H(j+1,j) = w.Norm_12(Q);

v = w/H(j+1,3j);

V.PutColumn(j+1,v);

Remark 1: Once again we pass all three SCMatrix variables by reference
(denoted by the ‘&’ symbol) as opposed to by the default case of passing by
value. For the variables H and V, the reason is as before - we want to change
the values within the matrices, and we want those changes to remain valid
after the function has returned (i.e., not be lost in the “pass by value” copy
of the variable discarded when the function returns). However, in the case of
the matrix A, this is not the case. We do not want to modify the values of
A. Why then do we pass by reference as opposed to passing by value? In this
case, we do so because we assume that A is very large, and therefore we do not
wish to allocate space for a copy of A when the function is called. We instead
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pass the matrix by reference so that no additional memory must be allocated;
the original memory from the calling function is used. We do, however, want
to guarantee that the matrix A does not change within the function, hence
why we add the const in the appropriate place within the argument list. The
“const SCMatrix &A” allows us to pass the matrix A by reference, but not to
update its values within the function ModifiedArnolds.

Remark 2: We introduced two new SCMatrix methods:

1. SCMatrix::PutColumn(int col, const SCVector &v), and

2. SCMatrix::GetColumn(int col, SCVector &v).

The first function copies the contents of the vector v into the col column
of the matrix. The second function copies the contents of the col column from
the matrix into the vector v.

Example: As an example of the use of the code above, we revisit our old
friend the Hilbert matrix of size three:

1 1/2 1/3
A=|1/2 1/3 1/4
1/3 1/4 1/5

The goal is to find the decomposition when m = 2. We input into our
function m = 2, the Hilbert matrix A as given above, and two SCMatrix
variables H and V which are of size 3 x 2 and 3 x 3 respectively. As output we
obtain H and V contained within the SCmatrix variables H and V respectively.
The decomposition for the 3 x 3 Hilbert matrix given above is:

1.0000 0.0000  0.0000
V = 0.0000 0.8321 —0.5547
0.0000 0.5547 0.83205
and
1.00000 0.60093
H = | 0.60093 0.52308
0.00000 0.03462

9.5.2 GMRES

GMRES stands for “generalized minimum residual” and is one of the most
effective solvers for non-symmetric systems

Ax=Db,
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where A is an n X n square but non-symmetric matrix; it is also assumed
non-singular since we look for the solution A~'b.

The main idea of GMRES is to minimize the residual || b — Ax,, ||z at the
m™ iteration. Specifically, x,, is a vector in the Krylov space

Km = {v,Ab,..., A" b}

and it can be determined by solving a least-squares problem; here m < n. At
the point m = n we are attempting to minimize the residual || b — Ax,, ||» and
hence obtain the solution x.

Such a minimization is equivalent to performing a QR decomposition to
the matrix of least-squares coefficients C (see section 3.1.7). We illustrate this
point next.

Let us assume that in matrix form we seek to find

|| Ca — £ ||o>= minimum

with respect to a. Then, we need to QR-decompose C which is a non-square
matrix p X ¢, p > q.

The idea is to apply Householder transformation to the extended matrix
C of p x p but stop when we have completed zeroing out the entries in the
first ¢ columns. We then write:

CZQH}],

where R is a ¢ x ¢ upper triangular matrix. Since || Q ||=]] Q! ||= 1, we also
have _ -
| Ca—f =] @ (Ca—f) [.=]| Ra— f |,

0

o= [ o= [1]-[ 5

where we split f in f; of length ¢ and f, of length (p — ¢). Then,

where we have defined R = l R ] and also f = Q'f.

But

| Ca—f 5= Ra—fi[J5+| £.
Therefore, the least-squares problem is equivalent to solving

Ra:fl,
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which minimizes the entire residual, since f, is fixed with respect to a.

The problem, however, in applying directly this QR procedure to
|| Ax,, — b ||s= minimum

involved in GMRES is that it leads to numerical instabilities. This is exactly
where the Arnoldi iteration comes in! The idea is to replace

Xm = me

and seek to find
| AV,,y — b |;= minimum.

Here V,, is the matrix containing as columns the orthonormal vectors pro-
duced by the Arnoldi iteration. Notice that we still use the Krylov iteration
but we basically orthonormalize them first via Arnoldi.

We can simplify the above problem since AV, = Vm+1}~1m, where fIm is
the extended Hessenberg matrix we have encountered before. Therefore, we
seek to find

| Vg1 Hyy — b [J2= minimum

and after multiplying by VI ., (whose norm is unity), we have
| H,,y — VL. b [s= minimum.

Finally, since V], ;b =|| b || e; by construction of the first orthogonal vector
vy, the minimization problem is:

| H,,y— || b ||2 € ||;= minimum.
Applying QR to this problem now involves the Hessenberg matrix H,,, so

Qmﬁm:Rm:lemla

where R,, is an m x m upper triangular matrix, and Q,, is an (m+1) x (m+1)
orthogonal matrix.

We can exploit the structure of the Hessenberg matrix and use Givens
rotations for accomplishing the decomposition. Recall that the Hessenberg
matrix contains an off-diagonal below the main diagonal. This set of entries
can easily by modified to zero by the appropriate Givens rotations yielding an
upper-triangular matrix R.
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Following the discussion above on least-squares, we can compute y,, from

where q; is the first column of Q,, excluding the last entry, i.e., q; is a vector
of length m. Finally, we compute x,, from

Xm = VY.

For convergence purposes we need to compute the residual r,,. This is
done efficiently as follows:

Itmllz = [ Huy— b ll2er s

= | Qu(Hny— b2 e1) [I2

| Ry — [ b [l & [|2

I (Rmy— (I blla)+[Ib ]l (@ —a)
0

= [[b ]l x(last entry of|a,|),

where q; is the extended (m + 1) vector produced by Arnoldi. This formula
then gives a very inexpensive way to compute the residual and check conver-
gence.

Remark 1: Unlike CGM, in GMRES the residuals decrease monotonically,
ie.,
| Ergr ll2<[ T [l2

because the corresponding Krylov spaces are nested and the residual is min-
imized directly. We recall that in CGM the error is minimized instead, and
thus reduction of the residual in the Ly-norm is not guaranteed.

Remark 2: From Arnoldi, we can check the value of hy,41m, to tell us when
the iteration can be terminated. When the condition A, 41, = 0 is satisfied,
we know that the solution x lies within the Krylov space IC,,,. This being the
case, the least-squares problem over the Krylov space will produce the exact
solution.
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Example: We now present an example to demonstrate the GMRES process.
Consider the following matrix

1.0 2.0 3.0
A=1]20 50 70
3.0 8.0 9.0

and right-hand-side vector

0.0
b= | 1.0
2.0

We will assume that our initial guess xo = 0. Using our modified Arnoldi
solver with m = 3 we obtain the extended Hessenberg matrix

14.2000 4.8652 —0.8305

0 - 4.3081 1.0414  0.3855
" 0.0000 0.3855 —0.2414
0.0000 0.0000  0.0000

and corresponding matrix

0.0000  0.8305  0.5571 0.4082
Vi = | 04472 0.4983 —0.7428 0.8165
0.8944 —0.2491  0.3714 0.4082

Both of these matrices will be used. A linear combination of the first three
columns of V.1 will be used to form the solution. To determine what the
proper combination is, we now want to solve the following problem:

| H,,y— || b |2 € ||;= minimum.

where H,, is the matrix above and || b ||, e; = (v/5 0 0 0)7.

To solve the minimization problem, we accomplish QR decomposition using
Givens rotations. For this problem, the three rotation matrices Gy, G; and
G, are given below:

0.0645 0.0196 0 0

Gy = —0.0196 0.0645 0 0
0 0 1.0000 0

0 0 0 1.0000
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[ 1.0 0.0 0.0 0.0
G, = 0.0 —0.1876  2.5802 0.0
0.0 —2.5802 —0.1876 0.0
| 0.0 0.0 0.0 1.0000
1.0 0.0 0.0 0.0
G, = 0.0 1.0 0.0 0.0
0.0 0.0 —16.4509 0.0
| 0.0 0.0 0.0 —16.4509

Each successive Givens rotation matrix is formed based upon the updated
matrix. Hence, Gq is formed based upon the entries of H,,, G, is formed
based upon the entries of GoH,,, and G is formed based upon the entries
of G1GoH,,. Applying the Givens rotations to both the right- and left-hand-

sides yields a modified matrix

0.0000 1.0000 —0.6305
0.0000 0.0000  1.0000

and a modified right-hand-side vector

0.1442
zZ= 0.0082 | .

—1.8569

R, =

1.0000 0.3341 0.0460]

Here we have omitted the last row of both the matrix and right-hand-side
vector because all the entries are zero as expected. We now solve the system
R,, y = z using back substitution. We obtain the vector

0.4472
y=| -1.1626 |,
—1.8569

which provide us with the coefficients for the linear combination of the vectors
of Vi,41. Taking the linear combination of the first three columns of V14
(since m = 3), we obtain:

0.0000 0.8305 0.5571 —2.000
0.4472 | 0.4472 | —1.1626 0.4983 | —1.8569 | —0.7428 | = 1.000 |,
0.8944 —0.2491 0.3714 0.000

which is the exact solution.
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9.5.3 GMRES(k)

The problem with the GMRES is that it requires storing all the vectors v,,,
which can become very expensive. To save storage and also computational cost
we can run the GMRES process only for £ steps and subsequently restart it
with the vector x; as an initial guess. This is the so-called GMRES(k) version
of the generalized minimum residual method. The choice of £ is crucial, as
a value too small may lead to divergence while a large value results in extra
computations.

Software

(o)  Putting it into Practice
Suite

Below we present a serial implementation of GMRES(m). This function
takes as input the integer m denoting the size of the Krylov subspace to be
used, the matrix A, the right-hand-side vector b, and the result vector x. We
automatically set the initial direction to (1,0,...,0)". Two constants can be
found in the function: maxit which specifies the maximum number of iterations
before terminating and tol which specifies the stopping tolerance.

void GMRES(int m, const SCMatrix &A, const SCVector &b,

SCVector &x){

int 1i,j,k,11,nr;

int N = A.Rows();

SCMatrix H(m+1,m),V(N,m+1);

SCVector w(N) ,r(N),y(m+1) ,z(N);

double * ¢ = new double[m+1];

double * s = new double[m+1];

const int maxit = 1000;

const double tol = 1.0e-7;

double delta,rho,tmp;

x.Initialize(0.0);
r = b - Axx;
for(j=0; j<maxit;j++){

y.Initialize(0.0);
y(0) = r.Norm_12();
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r.Normalize();
ModifiedArnoldi(m,r,A,H,V);

/* Givens Rotation to accomplish QR factorization */
for(i=0;i<m;i++){
for (k=1;k<=i;k++){
tmp = H(k-1,i);
H(k-1,i) = c[k-11*H(k-1,i) + s[k-1]*H(k,i);
H(k,i) = -s[k-11*tmp + c[k-11*H(k,1i);
}

delta = sqrt(H(i,i)*H(i,i)+H(i+1,i)*H(i+1,1i));
c[i] = H(i,i)/delta;
s[i] = H(i+1,i)/delta;

H(i,i) = c[il*H(i,i) + s[ilxH(i+1,1);

for(k=i+1;k<m+1;k++)

H(k,i) = 0.0;
y(i+1) = -s[il*y(i);
y(i) = clilxy(i);

rho = fabs(y(i+1));
if (rho < tol){
nr = i;
break;
}
}

/* Backsolve to obtain coefficients */
z.Initialize(0.0);
if (i>=(m-1)){
nr = m;
z(nr-1) = y(nr-1)/H(nr-1,nr-1);
}

for (k=nr-2;k>=0;k--){
z(k) = y(k);
for(1l=k+1;11l<nr;11++)
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z(k) -= H(k,11)*z(11);
z(k) = z(k)/H(k,k);
}

/* Linear combination of basis vectors

of the Krylov space */
for(i=0;i<nr;i++){

V.GetColumn(i,r);

X = x + z(1)*r;

if (rho<tol)
break;

r = b - Axx;
+
delete[] c;
delete[] s;
}

Remark 1: Observe that this function requires the storage of both H and V,
both of which may be of the same size as the original matrix A. This fact is
one of the primary motivations for introducing the restart parameter so that
smaller Krylov spaces (and hence less storage) can be used.

Remark 2: Instead of forming the Givens matrices explicitly as we did in
the example above, we can take advantage of the structure of the matrices so
that we need not store the rotation matrices. Instead, we can loop through
the appropriate positions, updating as we go.

9.5.4 Preconditioning GMRES

GMRES is used in practice when the matrix A is not well-conditioned. This
means that convergence is typically slow and appropriate preconditioners should
be employed. Similar to preconditioning of symmetric matrices where incom-
plete Cholesky was found to be effective, here we use incomplete LU (ILU).
Specifically, we employ the preconditioner

M=LU
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where L and U are the lower and upper triangular matrices corresponding to
A but with no fills-in at the entries a;; = 0. Note that the preconditioner
should not be constructed explicitly but rather be incorporated in the Arnoldi
iteration process. To this end, we need to insert the following code

My = v;

w = Ay
fori=1,...,7
hij = (w,v;)
w =W — hv;

in the modified Arnoldi iteration algorithm presented above.

Remark: GMRES employs long vectors to obtain orthogonality unlike the
three-term recurrence formula associated with symmetric systems. For non-
symmetric systems it is also possible to use three-term recurrence formula
as done in the Biconjugate Gradient (BiCG) method, employing two mutu-
ally orthogonal sequences of vectors. A more stable version of BiCG is the
Quasi-Minimal Residual (QMR) method which avoids possible break-downs
and converges faster, i.e., as fast as GMRES [39]. Both BiCG and QMR solve
tridiagonal systems corresponding to the three-term recurrence sequences. De-
tails of implementation for both methods can be found in [5].

9.5.5 Parallel GMRES

One immediate complication when attempting to parallelize the serial algo-
rithm previously presented is attempting to parallelize the modified Arnoldi
component. The brute-force implementation leads to very poor scalability.
Similar to the parallel PCG algorithm, we can also use blocked operations to
increase the efficiency and parallelism. One way proposed in [64] is to first
produce the following basis for the Krylov space

k
VI,AVh...,A Vi

and subsequently to orthogonalize the entire set. In contrast, in the standard
GMRES method each new vector is immediately orthogonalized to all previous
vectors. This approach increases significantly data locality.
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Another approach is to employ BLAS2 routines as much as possible in
GMRES instead of the obvious BLAS1, which is the least efficient. An al-
gorithm proposed in [79] is to replace the modified Gram-Schmidt with the
standard Gram-Schmidt but apply it twice. The double orthogonalization has
been shown to reduce the numerical instability associated with the classical
Gram-Schmidt method. In the context of more efficient computation, we can
now compute all the dot products in parallel.

9.6 What Solver to Choose?

The question of what solver and what preconditioner to choose is a complex
one, and in many cases there are more than one good candidates. From the
algorithmic point of view, we have to consider the properties of the matrix A,
and examine if :

e A is symmetric or non-symmetric.

A is positive-definite.

Both A and AT are available.

e A is sparse.

A is ill-conditioned or not.

Good preconditioner exists.

In addition, we have to consider the computational requirements and re-
sources, namely:

e Parallel or serial computation.

Vector or scalar processor.

Multi-threading.

Re-use of data in cache.

Indirect addressing.

e Memory size.
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Method | ddot | daxpy | dgemv | Storage
Jacobi 1 3n
SOR 1 1 2n
CGM 2 3 1 6n

GMRES |j+1| j+1 1 (j+5)n
QMR 2 12 2 16n

Table 9.2: Main operations and storage for iterative solvers; n is the matrix order
and j denotes the iteration number. The storage shown does not include the matrix
storage.

The above lists are indicative but not exhaustive of the issues that need to
be considered in the decision regarding the choice of solver. What is obviously
a faster code for serial computations is not necessarily faster on a parallel
computer. In table 9.2 we list the main operations in terms of BLAS routines
of the iterative solvers we studied in this book. Algorithms that employ dgemuv,
i.e., the matrix-vector multiply, are typically more efficient as this operation
can be done efficiently both in a serial and in a parallel environment.

For problems involving differential equations, the type of differential equa-
tion we have to deal with and the corresponding discretization we choose
defines the linear system we solve. For Poisson and Helmholtz equations we
obtain symmetric systems. A typical order-of-magnitude cost in computa-
tional work and storage for various direct and iterative solvers is shown in
table 9.3. The lower bound is of the same order of magnitude as the multigrid
method. This clear advantage of multigrid, however, can easily be lost on a
parallel computer as very sparse systems that need to be solved at the coarsest
level of multigrid are not easily parallelizable. Hence, multigrid is not neces-
sarily the fastest and Jacobi is not the slowest as the estimate for the serial
work suggests. Similarly, the most effective (in terms of its spectrum and serial
cost) preconditioner may not be the best overall preconditioner. Typically, the
more sophisticated preconditioners are more complex and simplicity is the rule
in parallel computing.

For large size problems the associated memory considerations suggest the
use of iterative solvers. A possible decision tree for this case is as follows, see
figure 9.17:

e [f the matrix is symmetric and positive-definite then preconditioned
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Method Direct /Iterative | Work | Storage
Multigrid I n n
SSOR,/Chebyshev | nS/4 n
SOR I n3/? n
CGM | n3/? n
Gauss-Seidel I n? n
Jacobi I n? n

Gauss Elimination /sparse D n32 | n-logn
Gauss Elimination/dense D n3 n?

Table 9.3: Computational work and storage for solution of a Poisson equation on a
N-by-N finite difference grid; n = N?2. I stands for iterative and D for direct solver.

Is A Symmetric?

No

Is A" Available?

Yes

Is A Positive—Definite

No Yes No Yes
QMR Algorithm GMRES or Try CGNR PCG
GMRES(k)

Figure 9.17: Decision tree for which algorithm to use based upon the properties of

A.
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conjugate gradient may be the best candidate. The question then be-
comes which preconditioner is the best — that is problem-dependent and
computer-dependent.

e If A is not positive-definite use CGNR, assuming the condition number
is reasonable.

e On the other hand, if A is not symmetric then the first choice should be
GMRES or GMRES(k) if memory is at a premium.

e However, if A” is not available then the QMR algorithm which is quite
robust and as fast as GMRES would be a good candidate — it works
effectively even for ill-conditioned matrices.

This is just one of the many possible scenarios — what makes this field
interesting is that the choices are not unique!
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9.7 Available Software for Fast Solvers

The basic algorithms we have presented in this chapter are relatively easy
to program but more sophisticated versions with respect to preconditioning,
restarts, orthogonalization, and parallel implementation are available in free
software at:

e www.netlib.org

The direct solvers are part of ScaLAPACK and LAPACK++ while the itera-
tive solvers are part of the Templates package [5].

Specifically in ScaLAPACK/LAPACK++, for LU type operations the rou-
tine SGETRF performs LU factorization with pivoting based on the BLAS3
routines and therefore it is very efficient. A similar routine SGETF2 is
based on BLAS2 routines, and it is also efficient. For the specific implementa-
tions involved see [26]. For symmetric positive-definite matrices the routines
SPOTRF and SPOTRS perform Cholesky factorization of a matrix and
solve a linear system, respectively. Finally, the routine SPTTRF performs
an LDL" factorization of a symmetric positive-definite matrix.

Also in ScaLAPACK/LAPACK++, for QR type operations the routine
SGEQRF performs QR factorization and the routine SGEQPF performs
QR factorization with column pivoting. The routine SGERQF performs RQ
factorization while the routine SGEHRD reduces a general matrix to upper
Hessenberg form.

The cpptemplates files available at www.netlib.org contain implementa-
tions of all the iterative solvers presented in this chapter for matrix-vector
classes. In particular, the routines declared in cg.h and cheby.h implement
the conjugate gradient method and the preconditioned Chebyshev method,
respectively, for symmetric positive-definite systems. The routines declared in
cgs.h, gmres.h, qmr.h and bicg.h are suitable for non-symmetric systems
and their names indicate the corresponding algorithms.
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9.8 Homework Problems

1. Find the condition number of the matrices

0.001 1 7 6.990
A—[ 1 llandB—[4 A ]

2. Let A = L DL” be a symmetric positive-definite matrix, and D =
diag (d;;). Then, show that

max(dii)
/€2(A) > ma

where k2(A) is the condition number of A in the Ly-norm.

3. For what values of € the matrix

i

is ill-conditioned? How will you results be affected if you are to compute
in single or double precision?

4. Let us assume that the matrix A is strictly diagonally dominant, i.e.,
> lag] < lagl .
i#]

Show that if you apply the LU factorization procedure to A with partial
pivoting, it has no effect on the rows, that is no actual row exchange
occurs. This proves what we discussed in section 9.1.2 that no pivoting
is required for a strictly diagonally-dominant matrix.

5. (Almost triangular matriz - Hessenberg)

This matrix is defined by
;. = 0, 7> ] +1
az-j 7é 0, Z S ] + 1

Estimate the operation count for the LU factorization and the backward
solve for this matrix.
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10.

11.

12.

13.

Consider the matrix A written in a block 2 x 2 form with submatrices
Aij, 1,5 = 1,2 of equal size m x m. Show that the Schur complement
defined as

S=Apn—AyAlA,

overwrites the matrix Ao, after m steps of Gaussian elimination without
pivoting.

Apply Hager’s algorithm (by-hand calculation) to a (3 x 3) matrix whose

rows (r;, 7 = 1,2,3) are: r; =i+ j — 1, j = 1,2,3. Compute also the
exact condition number in the L;-norm and compare the two values.

Apply Hager’s algorithm to estimate the condition number of the Hilbert
(n X n) matrix defined by

1
hi =
J

for n = 4,16, 32. (Use the LAPACK routines or any other available
routines). What do you observe 7

In the parallel LU program, we did not implement row pivoting. Modify
the code given in the text to accomplish row pivoting.

Using the parallel LU program as a guide, implement an MPI program
to accomplish Cholesky Factorization.

Apply the incomplete Cholesky factorization to the tridiagonal matrix
(=1, 4, —1). Compare the results with the results from the standard
Cholesky factorization. Does your conclusion hold for any banded ma-
trix?

In the cyclic reduction code presented in this chapter, the matrix A is
allocated as if it were a full matrix. Modify both the serial and the
parallel code so that only the necessary amount of memory is used to
store the tridiagonal matrix A.

Consider the following system:

—2x14+ 19y = F
Ty —2x9 + 223 = F
Ty —2x3 + 214 = Fj
r3 —2x4 + 25 = Fy
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14.

15.

16.

17.

18.

$4—2$5+2$6 = F5
275—2£U6+2£U7 = F6

1'6—21'7 = F7

Solve this system by hand using cyclic reduction. At what level does this
system terminate, and with what equation? Is there sufficient informa-
tion at the point of termination to obtain the solution? If so, accomplish
the back substitution to obtain the answer.

Use the Householder transformation to show that if H, is a Hessenberg
matrix and H. = QR then the matrix H, = RQ is also a Hessenberg
matrix.

The flop count for solving the overdetermined system Ax = b where A
is of size m x n is (choose one)

mn2 3 2 3

(a) > + " for normal equations and % — % for the Householder
QR method.

(b) The reverse of (a).
(c) None of the above.

The flop count for QR factorization of an n X n matrix with column
pivoting using the Householder method is (choose one)

The number of additions and multiplications in Cholesky factorization
is roughly half that of LU factorization.

(a) True.
(b) False.

The QR method conserves the bandwidth of a matrix (choose one)

(a) Always true.
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(b) In some cases.
(c) Never.

19. The QR factorization of a matrix A is (choose one)
(a) Always unique.

(b) Unique if A is non-singular.
(c) Not unique.

20. The most efficient way of distributing a matrix on a parallel machine is
by (choose one)

(a) Rows.
(b) Columns.
(c) Depends on the problem one is trying to solve.

21. Define h = &, p = k% and q[i][j] = (87> + 1)h?sin(2whi)sin(2why)
where 7,7 =0,..., N — 1. Let A be of the form given in figure 9.18.

G -1 -1l ! -1 T o] [qror(o7 |
-1 4+ -1 | -1 | [ u[1][o] q[1][o]
-1 4 - S I u[2][o] aL21[0]
R T S L P S § u[3][0] al3][o]
-1 -l =Ll | u[o]L] Aol
-1 I-1 4+p -1 | -1 I u1]a] qa[1]

-1 : -1 4+p—11 -1 : uf2][1] q[2][1]
R 1 ups]r] ar3l[L]
"""" R DY I B COT = al2
[ g a1 T u[dl2] altl2]

1 —1 | -1 4+ -1 1 uf21[2] a[21[2]

! 1l -1 gl -1 u[3][2] ql3][2]

- N i i rra— upolgal qLo3]
1 l R 21 gy -1 u[1][3] LTEN[K]|
-1 I -1 1 -1 4+ u[2][3] q[2][3]

| -1 I S STy u[3]3] a1l

Figure 9.18: Matrix system Au = q for N = 4.
Solve the matrix system Au = q for u using the following for methods:

(a) Serial Jacobi.

(b) Parallel Jacobi.
) Serial Conjugate Gradient.
)

Serial Preconditioned Conjugate Gradient, preconditioned using in-
complete Cholesky.
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22.

23.

24.

(e) Parallel Conjugate Gradient.

(f) Parallel Preconditioned Conjugate Gradient, preconditioned using
incomplete Cholesky.

Solve for both N = 4 and N = 20. Here N denotes the number of
points used in both the x and y directions (hence the total number of
grid points is N? points, which corresponds to the rank of the matrix
for which we are solving). For the serial algorithms, provide a graphical
plot of the solution wu[i][j] at the points (hi, hj) (either a contour or
surface plot). For the parallel algorithms, show the parallel speed-up
using different number of processors (this will require you to use the
M PI Wtime function to time your runs).

Solve the Poisson equation on a three-dimensional grid N x N x N using
a second-order finite difference discretization with Dirichlet boundary
conditions. Employ the following (serial) algorithms:

(a)

(b) Conjugate Gradients with incomplete Cholesky as preconditioner.
(c) SSOR with Chebyshev acceleration.

(d) Jacobi.

Conjugate Gradients.

Estimate the computational work in terms of O(n®), that is find «.
Verify these estimates by solving for n = N3 = 643 and timing your
codes on the same computer.

In the text we presented a QR factorization example using the Hilbert
matrix. At the conclusion of the example, we had constructed the matrix
R. From the values of w found in the example, compute the matrix Q
and show that indeed A = QR.

Hint: Recall that the Householder matrix is given by

WWT

H=1-2

wliw’

Construct H; and Hy and use them to construct Q by the expressions
given in the text.

Modify the QR routine in the text so that it computes the value of Q.
You will need to modify the input arguments of the function to accept
a SCMatrix @ which you should fill in with the appropriate values.
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25.

26.

27.

28.

29.

30.

31.

Write a serial function which accomplishes QR decomposition of a tri-
diagonal matrix using Givens rotations. The function should have at
least the following three arguments: the matrix A as input and the
matrices Q and R as output.

Create a function which solves the system Ax = b for tridiagonal ma-
trices A, and uses the QR code you wrote previously. What property of
both Q and R can we use to accomplish this efficiently?

Write a parallel program which accomplishes QR decomposition of a tri-
diagonal matrix using Givens rotations. Partition the matrix A by rows
across the processors. Design your program so that each processor has
the rows of Q and R which correspond to the rows of A which reside on
the processor.

Consider five symmetric Toeplitz matrices A with entries given by (k =
1,...,n)

o) =1k o =1/Vk o =18 o =k a)) =cosk/k,

and an arbitrary non-zero vector b. Use PCGM to solve the systems
Ax = b with circulant preconditioners and experiment with different
types (i.e., number of Toeplitz diagonals employed). Compare your re-
sults without CG preconditioning in terms of the number of iterations
for sizes up to n = 100 and tolerance levels just above single machine
accuracy.

Estimate the operation count for GMRES(k) for fixed k£ and compare it
with GMRES assuming a large value of the order n of matrix A. Does
GMRES(k) converge for any value of k?

For the GMRES example problem given in the text, use the function
provided to attempt GMRES(2). Add cout statements to keep report
the residual. Try a variety of different initial guesses x, and plot the
residual versus iteration for each case. Is the convergence rate the same?

Consider the linear advection-diffusion equation

o ou_ o
ot 827_1/8172

where v is the diffusion coefficient, in the domain

r €[0,10] and t € [0,5].
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We also assume periodic boundary conditions and that the initial con-
ditions are:

uw(0<z<1;0)=z(1—2) and u(l <z<10;0)=0

Employ a second-order upwind for the advection and a central finite
difference scheme for the diffusion (with a Crank-Nicolson in time) to
discretize this problem. Invert the resulted system using GMRES(k)
and experiment with different values of k to minimize the solution time.
Use n = 128 points for the discretization. Does the value of optimum £
depends on the time step At. Is this method unconditionally stable?



