Advanced Data Visualization

CS 6965

Spring 2018

Prof. Bei Wang Phillips
University of Utah

Announcement

- Project 2 is due today! What I am looking for: efforts.
- Project 3 is posted today!

Review: Contour Trees and Morse-Smale Complex

Data has shape

Elevation on a terrain: function on a 2D domain

Shape of data?

Contour Tree

Data has shape

Elevation on a terrain: function on a 2D domain

A Map of Science Example

MAP OF SCIENCE?

MAP OF SCIENCE

Mercator coordinate visualization of a spherically embedded graph representing the interconnectivity of science from data in [Borner et. al. 2012]

56

The network was embedded in a low-dim space that the authors concluded by visual inspection, that "the consensus map has a circular form".

WITH TDA: WHAT IS THE SHAPE OF THE MAP OF SCIENCE?

What is data?

Vector Fields Combustion and Ocean

Make the flow patterns visible & Interpretable

Quantify feature stability

Separate features from noise at multi-scale

Ocean Eddy Simulation

Map: Courtesy of SlidesCarnival & Unsplash Simulation: [Maltrud, Bryan, Peacock 2010]

Visualize flow in 3D

Understand turbulent flow

Material Science Your iPhone Battery

How long can your battery last?

Ion diffusion geometry extraction in battery

Networks Brain networks

Inadequate Network Visualization

Brain Network Visualization

Avoid network hairballs while preserving structure?

Topology and brain networks

Autism Brain Networks

Can we tell autism subject from control?

Autism Brain Networks

Astronomy Telescopes and Black Holes

Largest radio telescopes in the world

Radio telescope Data

NGC 404: Mirach's Ghost Galaxy

Feature Denoting and Source Finding

Paul Rosen, Bei Wang, Anil Seth, Betsy Mills, Adam Ginsburg, Julia Kamenetzky, Jeff Kern, Chris R. Johnson. Manuscript, 2017.

Denoising at Multi-scale and Source Finding

Stepping Through Slices

MOMENT 0 ANALYSIS

original simplified

Observing the red shift

Observing the red shift

Observing the red shift

Software Visualization Circular patterns in a program

An example

A.N.M. Imroz Choudhury, Bei Wang, Paul Rosen and Valerio Pascucci, 2012

Convert memory reference traces to a point cloud

- Execute an application to capture memory reference trace
- Convert to high-dimensional point cloud
- Topological analysis identify cycles
- Visualize result

Capturing a memory reference trace

Memory reference trace to point cloud

Write 0x7fffa	ac539ed8			\circ	0	\circ	
Write 0x7fffa	ac539ed0				0		
Write 0x7fffa	c539ecc		0	0		0	0
Write 0x7fffa	ac539ec8)	0	0 0	
Read 0x7fffa	ac539ecc						
Read 0x7fffa	ac539ec8		0	0		0	0
Write 0x7fffa	ac539eb8				0		
Write 0x7fffa	ac539eb0			O	0	O	

Topological data analysis to identify cycles

Topological data analysis to identify cycles

Topological data analysis to identify cycles

Algorithm dependent structures

```
File: matmult.cpp

1: unsigned int i, j, k;
2: for (i = 0; i < N; i++)
3: for (j = 0; j < N; j++)
4: for (k = 0; k < N; k++)
5: linC[i*N + j] += linA[i*N + k] * linB[k*N + j];</pre>
```


Algorithm dependent structures

```
File: blocked-matmult.cpp

1: unsigned int i, j, k, j0, k0;
2: for (k0 = 0; k0 < N; k0 += b)
3:    for (j0 = 0; j0 < N; j0 += b)
4:    for (i = 0; i < N; i++)
5:        for (k = k0; k < min(k0 + b, N); k++) {
        r = linA[i*N + k];
7:        for (j = j0; j < min(j0 + b, N); j++)
8:        linC[i*N + j] += r*linB[k*N + j];
9:    }</pre>
```


Algorithm dependent structures

Non-loop based structures

```
File: MPM.cpp
  1:for(unsigned ii=i; ii<=i+1; ii++) {
  2: for(unsigned jj=j; jj<=j+1; jj++){</pre>
        g->mass(ii,jj) += g->S(ii, jj, mp->position(p))*mp->mass(p);
        g->momentum(ii,jj) += g->S(ii, jj, mp->position(p))*mp->mass(p)*mp->velocity(p);
  6:}
File: Grid.h
  1:double S(int i, int j, const Point& p) { ... }
  2:unsigned indexify(unsigned i, unsigned j) const { ... }
  3:double S x(int i, double x) { ... }
  4:double S_y(int j, double y) { ... }
  5:static double compute_shape_function(int cell, double position, double cell_size) {
  6: // This is the distance of "position" from the position of "cell".
  7: const double cell_distance = std::abs((position - cell_size*cell) / cell_size);
  8: // Perform case analysis.
  9: if(cell distance >= 1.0){
        return 0.0;
 11: }
 12: else{
        return 1.0 - cell distance;
 14: }
 15:}
```


Topology Tool Kit TTK

Installation Demo

Dragon Demo (contour tree)

Morse Persistence Demo (MSC)

A few tips on Project 2

- Start today! The installation is going to take a while (4+ hours).
- Follow the demo closely, however pay attention to some differences in different versions of TTK
- Follow the reading materials for this week.

Any questions?

You can find me at: beiwang@sci.utah.edu

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Presentation template designed by <u>Slidesmash</u>
- Photographs by <u>unsplash.com</u> and <u>pexels.com</u>
- Vector Icons by <u>Matthew Skiles</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used

