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In this paper, we present an efficient three-dimensional (3-D)
parallel thinning algorithm for extracting both the medial surfaces
and the medial axes of a 3-D object (given as a 3-D binary image).
A new Euler table is derived to ensure the invariance of the Euler
characteristic of the object, during thinning. An octree data struc-
ture of 3 x 3 x 3 lattice points is built to examine the local
connectivity. The sets of “simple” points found by different re-
searchers are compared with the constructed set. Different defini-
tions of “surface’ points including ours are given. By preserving
the topological and the geometrical conditions, our algorithm pro-
duces desirable skeletons and performs better than others in terms
of noise sensitivity and speed. Pre- and postprocessors can be used
to remove additional noise spurs. Its use in defect analysis of
objects produced by casting and forging is discussed. < 1994 Academic

Press, Inc.

1. INTRODUCTION

In the past, a number of thinning or skeletonization
algorithms for 2-D digital images have been developed
to extract shape features for image processing purposes.
Those thinned figures have applications ranging from bio-
logical cell studies to character recognition (see[l] for a
recent survey of 2-D skeletonization algorithms). Thin-
ning schemes are useful because they reduce large
amounts of image data to thin-line patterns (skeletons) so
that shape analysis can be implemented. Although there
exist many 2-D thinning algorithms, there are only a few
studies done for the 3-D case. There are three primary
reasons. First 3-D digital data was not readily available
in the past. Second, 3-D topological properties were
harder to address due to the higher dimensionality. Third,
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useful applications of 3-D skeletons were not apparent.
However, these factors are no longer true. 3-D digital
images (or objects) can now be generated through com-
puted tomography [2] or computer graphics [3]. Concepts
such as holes, Euler characteristic, connectivity, and sim-
ple points have been studied for 3-D domain by various
researchers [4-6]. In this paper, we present an efficient
parallel thinning algorithm for extracting both the medial
surfaces and the medial axes (we refer to both of these
as the ‘‘skeleton’’) of a 3-D digital object. The skeletons
can be used for casting and forging defect analysis.

In 3-D Euclidean space, the skeleton (or the medial
surface) of a geometry is the locus of the centers of all
inscribed maximal spheres of the object where these
spheres touch the boundary at more than one point {1, 6,
10, 11]. It can be considered as the simplified characteris-
tic of a geometry and is used to reduce the feature search
space of a geometric model. In the discrete space, there
exist two basic methods to extract the skeleton from an
object. One is to use the distance transformation. The
other method is to use the thinning procedure that repeti-
tively deletes the border points of an object satisfying
topological and geometrical constraints until a smaller set
of connected points is acquired. This set of connected
points is only an approximation to the ‘‘true” skeleton
in the Euclidean space. We will only consider the thinning
operation in this paper. The topological requirement is to
preserve the number of connected objects, cavities, and
holes in the original shape [4-6]. In our algorithm, Euler
characteristic and connectivity are preserved to guarantee
the invariance of these topological properties. The geo-
metrical condition, on the other hand, is used to ensure
the desired width and location of the skeleton. Surface
and arc end point conditions are given, and depending on
these end point condition, either the medial surface or
the medial axis can be extracted by the thinning operation.
In addition to the topological and the geometrical con-
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straints, a good thinning operation should produce a skele-
ton that represents significant features of a geometry and
that is insensitive to boundary noise. It is possible that
few spurs still remain in the skeleton because of the small
variations on the surfaces of the object. In this case, we
can either use a pre-processor such as a 3-D digital filter
to smooth out noises in 3-D digital images before applying
the thinning process or use a post-processor to remove
spurs in the skeleton afterwards by thresholding on the
length of each skeleton arc.

This paper is organized as follows. In Section 2, proper-
ties of 3-D digital topology pertaining to thinning opera-
tions are discussed. An Euler table is derived to determine
the invariance of the Euler characteristic, and an octree
data structure of 3 x 3 x 3 lattice points is built to examine
the local connectivity. Various definitions of a *‘simple”’
point are also examined. Section 3 describes our thinning
algorithm which can be used to extract either the medial
surface or the medial axis. A new definition of a *‘surface”
point is given. Comparisons are made among various thin-
ning algorithms. In Section 4, skeleton models are con-
structed by using pre- and postprocessors. Applications
of skeleton models for casting and forging defect analysis
are presented in Section 5.

2. DIGITAL TOPOLOGY
2.1. Some Basic Definitions

The study of the topological properties such as adja-
cency, connectivity, and Euler characteristic is called dig-
ital topology. In this section, some basic definitions of
digital topology are given. Further details can be found
in [4, 5]. The object space used to represent a geometry
is stored in a 3-D binary array of size kg, X jmax X imax:
ZJ = {U = (k’ j’ l)l(k! j’ 1) < (kmax’ jmaxv imax)}9 in which
every volume element (or voxel), v, is represented by its
centroid point (, j, i), and the point has the value of either
0 or | (we will use **voxel’” and ‘‘point’’ interchangeably
in this paper). Objects of interest in the domain Z* are
represented by the nonempty subset S which consists of
all the points with the value 1. The complement of §, S,
consists of all the points with the value of 0. A point v =
(k,j, & in § is called a “‘border’’ point if at least one of
its 6-neighbors is in S [10, 11]. For convenience, it is
assumed without loss of generality that all boundary
points of Z* (i.e., {(k, j, Dk = 0 or kp,s j = 0 OF iy
i =0ori,]) belong to S. Each point v has two most
common types of neighbors:

(1) 6-connected neighbors, Ny(v = (k, j, 1) = {(t, 5, 1|
|t — k| +|s —jl + |r =il = 1}; and

(2) 26-connected neighbors, Ny (v = (k, j, i)) = {(w, v,
wmax(lw — k|, [v —j|, lu — i) = 1}.

In other words, N¢(v) are the direct adjacent neighbors
of point v, and N, (v) are those 6-neighbors plus all the
diagonal and the corner neighbors within a 3 x 3 x 3
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FIG. 1. (a) Indices of the 26-neighborhood of a point v, N(v); (b)
and (c) are two other ways of representing N(v).

neighborhood, as illustrated in Fig. la. Two other ways
used in this paper to represent this neighborhood, N, (v),
are shown in Figs. |b and Ic. For simplicity, N(v) is
used to denote N, (v) if not specified otherwise, and N(v)
together with v is denoted by {N(v) U v}.

A 6-(26-) path of length » in § is a sequence of points,
Py 2, = {U; € 5|0 =i = n}, such that v, is 6-(26-) adjacent
to its preceding point, v;_,, for all i. Two points v; and v;
are 6-(26-) connected in S if there exists a 6-(26-) path,
Ui, .« -, U}, such that all of the points are in S. The set of
points which are connected under 6-(26-) connectivity in
S are called 6-(26-) connected components (or objects) of
S. Similar definitions can be stated for S. Opposite types
of connectivity are usually used for S and S to avoid
ambiguous situations (see [5] for examples). In this paper,
26- and 6-connectivity are used for S and §, respectively.
An arc (or a simple arc) is a 6-(26-) path such that each
point on the 6-(26-) path is 6-(26-) adjacent to just two
other points on the path, with the exception that the two
end points of the arc have only one neighbor. On the
other hand, a curve (or sometimes is called a closed curve)
is a 6-(26-) path that has exactly two neighbors 6-(26-)
adjacent to every points on the path. There exists exactly
one component of § which is called the background that
contains the boundary points of Z*. The other components
of § are completely surrounded by §, and are called cavit-
ies of S. Definition of a hole in a 3-D digital image is
different from a cavity in that it is not completely sur-
rounded by S. A 3-D hole can be thought of as the tunnel
inatorus [4]. Anobject with n holes has a surface topologi-
cally equivalent to an n-hole torus. In other words, if an
object has a hole, then the object cannot be continuously
deformed to a point without splitting the surface. How-
ever, counting the number of 3-D holes is not an easy
task because it is quite hard to distinguish a hole from
the background. Fortunately, we can describe a 3-D hole
differently by using the well-known Euler formula that
relates the number of objects, cavities, and holes in a
simple and consistent manner.

2.2.

The 3-D Euler characteristic x(S) is defined by the
global formula

x(8) = 0(S) — H(S) + C(S), (1

Euler Characteristic
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where O(S), H(S), and C(S) are the numbers of connected
objects, holes, and cavities of S, respectively [4-6]. Simi-
lar to the 2-D case, a local formula G(§5) can be used to
reduce the complexity of calculating x(S) by considering
predefined neighborhoods, N(v), for each v in §. Since
3-D objects can be represented either as surface patches
(Fig. 1b) or lattice of points (Fig. 1a), the Euler character-
istic can be computed locally based on either surface
characteristic or the lattice structure of §.

Using the surface patches of §, 45, Lobregt et al. [7]
devised a table look-up method to compute the Euler
characteristic within N(v) for 3-D objects. The authors
divide N(v) into eight overlapping 2 x 2 X 2 cubes (or
octants), labelled as N2(v). The Euler characteristic is
computed by summing the contribution of each octant
(i.e., G = 2 G488 M N%(v)) ). The advantage of using
this approach is that there are only 2% (=256) possible
configurations for each octant; hence, G¢(3S M N3(v))
can be precalculated and stored in a table resulting in an
efficient computation. For 26-connected images,
G5 (05 M N*(v)) was found to be equivalent to G¢(3S N
N2(v)). The Euler characteristic of 4§ for the 22 basic
configurations of an octant is given in column 4 of Table
1. The remaining 256 configurations can be generated
through symmetry operations on the 22 octants.

When considering a 3-D object as a finite collection of
points, a similar definition of the Euler characteristic of
S can be derived from algebraic topology (see [4-8] for

TABLE 1
Euler Table for Surface and Lattice Representation
Binary
R Gy(8S) = GglaSL=

i 1234 5678 n G(35) Gy(38)
1 0000 0000 0 0 0
2 0000 0001 1 1/4 1/8
3 0000 0011 3 0 0
4 0000 1001 9 1/2 1/4
5 1000 0001 129 1/2 1/4
6 0000 0111 7 —1/4 - 1/8
7 1000 0011 13t 1/4 1/8
8 0010 1001 4] 3/4 3/8
9 0000 1111 15 0 0
10 0010 1011 43 -1/2 ~1/4
11 1000 1011 139 - 1/2 -1/4
12 0100 1011 75 0 0
13 1100 0011 195 0 0
14 0110 1001 105 1 172
15 1110 1001 233 - 1/4 -1/8
16 1101 0011 211 —-3/4 -3/8
17 1111 0001 241 ~1/4 -1/8
18 1101 1011 219 =312 -3/4
19 1111 1001 249 ~ 172 -1/4
20 tEti 0011 243 0 0
21 1111 1011 251 1/4 1/8
22 1111 1t 255 0 0
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FIG. 2. {(a) A2 x 2 X 2 cube or octant, N*(v); (b) octant with binary
configuration 1111 1011 (the solid spheres represent points with value
1 and the empty spheres represent points with value 0).

details) as
G(S)=v—e+f-oct, (2)

where v, ¢, f, and oct are the total number of vertices,
edges, faces, and octants in S, respectively. It was shown
in [4] that the global and the local computation of Euler
characteristic are actually equivalent, i.e., x(5§) = G(§).
By the Poincaré duality, it is well known that x(§) =
£x(aS) in algebraic topology [8] where x(45) is the Euler
characteristic of the surface 95. We will show that this
relation also holds in digital topology. Let us first consider
an octant shown in Fig 2a, and consider only 6-con-
nected objects.

As we come across each octant of the lattice structure of
S, each vertex, edge, and face of the octant is encountered
eight times, four times, and twice, respectively, but only
once for each octant. Therefore, from Eq. (2), the Euler
formula is an octant N?(v) becomes

1SN

G (SN N (v)) = =i — %" I et 3)

oo =

Column 5 of Table 1 is the value of the Euler characteristic
for the lattice representation of S using Eq. (3). The exam-
ple in Fig. 2b is for the binary configuration 1111 1011
(decimal 251). G¢(S M N%*(v)) for this example is § — § +
3 — 0 = . Note that G4(3S M N?(v)), the Euler characteris-
tic for the surface representation of §, is § (from Table I).

PrROPOSITION 1.  The formula x(§) = ix(3S) holds in

digital topology.

Proof. Column 4 of Table 1 lists the Gy, (35 M N2(v))
values derived based on the results in [7]. We have calcu-
lated the G,6(S M N2(v)) values in column 5 of the table.
It is apparent that G, (S N N2(V)) = §Gag6) (05 N N2 (v)).
In [9], the authors have shown that the 22 configurations
of an octant in Table 1 is complete. Hence, since the
Euler characteristic is an additive property and G(S) =
x(S) [4, 5],

x(8) = §’: Gz(,(s)(s N NIZ(U))

= %2 Gz(,(())(as N N,Z(U)) = %X(aS). Q.E.D.
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In order to preserve topological properties for thinning
operations, we are required to show that a point v within
N(v) is invariant in the sense of the Euler characteristic,
i.e., 3G4(S N N@) = G¢(S N N@) ~ G5(S N {N()
Uu}) = 0, where § denotes the change of the Euler charac-
teristic. Consequently, from Eq. (3) and the fact that
ov;, = —1, we get

20 _Y  Be 1
8G(S N N*(v)) = doct, 5 + L (4)

where doct;, 8f;, and 8e; are the changes in the number
of octants, faces, and edges that contain the point v, re-
spectively (for example, 8f; = number of faces if v is not
included, - number of faces if v is included). Using an
idea similar to that in [7], an Euler table for 6-connected
objects can be derived from Eq. (4). It is listed in column
2 of Table 2. Using the same example in Fig. 2b for an
illustration, 8G¢(S M N2(v)) is0 — 4 + $ — § = —4. For
simplicity, the entries in the table have been multiplied
by 8. Note that Table 2 cannot be reduced to the 22 basic
configurations as in Table 1 because point v is fixed at
the binary position 8 (see Fig. 2a), and none of Table 2’s
even entries are available. The apparent advantage of
using Table 2 over Table 1 is that the effort in computation
of Euler invariance is reduced by one-half. For 26-con-
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nected objects we can complement the 6-connected and
use the formula 8G,,(§) = 8G¢(S) to determine the invari-
ance of the Euler characteristic. The results are listed in
column 3 of Table 2.

2.3. Simple Point and Connectivity

In the past, simple points have been used for thinning
operations to preserve topological properties such as the
number of connected objects, cavities, and holes (6, 7,
10-14]. A discussion of various definitions of *‘simple”
points follows. To determine a simple point, Shrihari,
Udupa, and Yau partition {N(@) U v} (i.e., N(v) along
with v) and N(v) such that all the points within each
partition are connected [12]. If the number of the two
partitionings are the same, then v is simple. In other
words, path connectivity should be preserved. However,
as illustrated in Fig. 3, this condition is necessary but
not sufficient. After removing v, the path connectivity is
preserved in N(v) but a hole (shown as wvw) is created
during the process. Therefore, their algorithm does not
preserve digital topology. Lobregt, Verbeek, and Groen
define simple points as border points which are invariant
in the sense that removing them preserves Euler charac-
teristic [7]. However, using this characterization alone
is also insufficient because 8G(S M N(v)) = ax(S N
N(@)) = 0and 6C(S M N(v)) = 0 imply 8O(S M N(v)) =

TABLE 2
Euler Table for Preserving Euler Characteristic

n 858G, 885Gy n 8 5G, 858Gy n 858G, 885Gy n 88G, 838Gy, n 858G, 808Gy
1 -1 1 53 3 1 105 -1 h 157 3 I 209 1 -1
3 1 -1 55 | —1 107 1 3 159 1 -1 211 3 1
5 1 -1 57 1 3 109 1 3 161 -1 -3 213 -1 1
7 3 1 59 -1 1 111 -1 1 163 t -1 215 1 -1
9 -1 -3 61 3 | 113 1 -1 165 1 3 217 1 3
11 1 -1 63 -3 -1 115 -1 1 167 3 1 219 3 i
13 1 -1 65 -1 -3 117 -1 1 169 -1 1 221 -1 1
15 -1 1 67 1 3 119 -3 -1 171 1 -1 223 -3 -1
17 1 -1 69 i -1 121 1 3 173 1 3 225 -1 1
19 3 1 71 3 1 123 -1 I 175 =1 I 227 1 3
21 3 i 73 -1 1 125 -1 1 177 1 -1 229 1 3
23 S -1 75 1 3 127 -7 -1 179 -1 | 231 3 1
25 I 3 77 l -1 129 -1 -7 181 3 I 233 ~1 5
27 3 1 79 =1 1 131 I -1 183 | -1 235 1 3
29 3 1 81 1 -1 133 1 -1 185 1 3 237 I 3
31 1 -1 83 3 l 135 3 1 187 ~1 1 239 ~1 1
33 -1 -3 85 -1 1 137 -1 -3 189 3 1 241 1 -1
35 1 —-1 87 1 -1 139 1 -1 191 -3 -1 243 -1 1
37 1 3 89 1 3 141 1 -1 193 -1 -3 245 ~1 )|
39 3 1 91 3 1 143 -1 1 195 1 3 247 -3 -1
41 -1 1 93 —1 1 145 I -1 197 1 -1 249 1 3
43 1 ~1 95 -3 -1 147 3 1 199 3 1 251 -1 1
45 1 3 97 -1 1 149 3 1 201 -1 1 253 ~1 1
47 -1 I 99 I 3 151 5 -1 203 i 3 255 1 -1
49 1 ~1 101 1 3 153 1 3 205 1 -1
51 -1 | 103 3 1 155 3 1 207 -1 1
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FIG. 3. A hole is created after the removal of v, even though path
connectivity is preserved.

SH(S M N(v)). Hence, it is not possible to determine the
number of objects and holes remain the same. Figure 4
illustrates an example where the removal of v not only
creates a hole but also an additional object which results
in no change of the Euler characteristic. However, this
is certainly not desirable because it changes the topology
of the original object. In addition, if the deletion of v
removes a hole, then v is a nonsimple point [5]. For that
reason, a more stringent characterization of a simple point
is needed.

Kong and Rosenfeld in their survey paper on digital
topology [5] discuss five different definitions of *‘topology
preservation’” of a 3-D thinning algorithm. One of which
is a characterization of a simple point given by Morgen-
thaler [6] that has been known for being a complete set.
A border point v is classified as ‘‘simple”’ if and only if
its removal does not change the number of connected
objects and holes for both § and §. Simple points, as
defined in [6, 13] have the following property:

PROPOSITION 2. A border point v is a ‘‘simple’’ point

if and only if

(a) 8G(S M N(v)) = 0; and (5)
(b) 8H(S M N(v)) = 0; 0or (6)
() BOSMNwW) =0 (7

Proof. Since Morgenthaler’s definition of a simple
point has been proven to be complete, we will show that
the two definitions are actually equivalent. First, we will
show the *‘if”” part. In [13], the authors show that if
3G(S M N(v)) = 0 where v € § is a border point and
8O(S N N@)) = 0 then 80(S N N(@)) = 0. A similar

FIG. 4. An example illustrating that removing a point v does not
affect the Euler characteristic, but does modify the digital topology.
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derivation shows that 8H(S N N(v)) = 0 implies 8H(S N
N(@)) = 0 given 8G(S N N(v)) = 0. We also know that
SXSNN@W) =8OS NN@)—-dHSNNQ@)+aCSN
N(v)) from Eq. (1) where *‘8" denotes the ‘*‘change’’ oper-
ator defined earlier. If §G(S M N(v)) = 0, then §O(S N
N(v)) = 8H(S M N(v)) because 8C(S N N(v)) = 0fora
border point v and §G(S M N({v)) = x(5 M N(v)). There-
fore, if Egs. (5) and (6) or Eqs. (5) and (7) are satisfied,
then §O(S M N(@)) =0, 80(S M N@) =0, 8H(ES N
N@)) = 0, and 8H(S M N(v)) = 0. In_other words,
oS N {N(@) Uuvh =0 N N, O N {Nwy U
vh) = O(S N Ny, HS N {N() U v} = HS N Ny,
and H(S N {Nw) U v}) = H(S N N(@)).

The “*only if*” part is straightforward. Since O(§ N
{N@) U v}) = O(S N N()) and H(S N {Nw) U v}) =
H(S N N(v)), then 80(S N N@)) + 8H(S N N@)) =
8G(S M N(v)) = 0 provided v is a border point. It follows
since SH(S N N(@)) =00rd0(S M N(v)) = 0are also true.

Q.E.D.

Tsao and Fu use two checking windows in N(v) to
determine Eq. (6) [10, 13]. Checking windows WI, WJ,
and WK are defined for each principle planes, x = i,
y = j, and z = k within N(v), respectively. Each border
point has two windows associated with it. However, as
illustrated in Fig. 5, this approach does not provide a
sufficient condition. That is, not all of the simple points
can be detected using two checking windows. It can be
seen that v is characterized as a nonsimple point due to
two non-simple windows WJ and WK (i.e., points in both
windows are disconnected after delecting v), but in fact
v should be a simple point.

In [11], Gong and Bertrand use some predicates based
on Morgenthaler’s definition to determine simple points.
However, these new predicates have the same drawback
of insufficiency. The same configuration in Fig. 5 illus-
trates an example where points P,and P,, violate condition
2¢ and 2d in their definition of a simple point (points P,,
P;, P, P, P;, P, P, are defined in [11]). Malandain and
Bertrand in [14] give another simpler definition of a simple
point based on Morgenthaler’s characterization. The
definition requires that condition in Proposition 3 to be
satisfied. In addition, the number of 18-connected S com-
ponents needs to be 1 after removing v. Even though the
algorithm for computing connected components in N(v)
is straightforward, their set of simple points is still insuffi-

FIG. 5. visasimple point, but fails to be characterized in [10, 11, 13].



3-D MEDIAL SURFACE/AXIS THINNING ALGORITHMS

467

FIG. 6. Adjacency tree of N(v).

cient because this definition can not detect the creation
of holes (see Fig. 3 for an example). Hence, removing v
will change the Euler characteristic.

Instead of trying to determine 3-D holes by using check-
ing windows as in [10, 13], we can alternatively use Eq.
(7) to test “‘simplicity”” of a point by determining the
number of changes of connected objects in N(v). Since
the center point v € § and all of its 26-neighbors are
connected to it, O(S M N(v)) is always 1 before the dele-
tion of v. Therefore, if O(S N N(v)) is 1 after the removal
of v, then Eq. (7) is met. Hence, we have

PropPoSITION 3. 80(S M N(v)) =0ifand only if O(S N

N@)) = 1.
Proof. See the proof for Proposition 1 in [6].

To determine connectivity in a more efficient manner,
we first propose an octree-type data structure for N(v).
The underlying idea of an octree representation s to recur-
sively partition a cubic volume into eight sub-cubes called
octants until homogeneity exists in each of those octants
(i.e., all voxels in a given octant either belong to S or S)
[15]. The octree data structure can be represented as a
tree in which each non-terminal node of the three has
eight children, and the leave nodes of the tree denote
data points. Exploiting the recursive nature of the octree
structure, we develop a labeling algorithm to determine
the number of 26-connected objects in N(v). In our data
structure (called the adjacency tree of N(v)) the topmost
node of the tree is v, the center point of N(v). By subdivid-
ing N(v) in Fig. la into eight overlapping octants as shown
in the second level of the tree, adjacency relationships
among those octants are manifested by connecting over-
lapping points in them (see Fig. 6). The following algo-
rithm employs the adjacency tree data structure to calcu-
late the number of connected objects in N(v).

The labeling algorithm consists of two procedures,
N(uv)-Labeling and Octree_Labeling. The function of
N(v)-Labeling is to label N(v) so that the number of
connected objects is determined. First, a local copy of
N(v) is made for the purpose of labeling. An initial label

other than the value of [ is assigned. We use 2 for such
label. Indexing through the 26 neighbors of v, a call to
the second procedure Octree_Labeling is made for each
point that has the value 1. The second procedure Oc-
tree_Labeling is used to label corresponding octants of
the point. The main structure of this function is based on
the octree scheme where there are eight octants. For each
octant, there are seven points which are under investiga-
tion excluding v itself. The order of the examination is
dependent on the number of adjacent octants of the partic-
ular point. If the point has a 1 value, it is set to the
current label and the corresponding octants are labeled
by recursively invoking procedure Octree_ Labeling with
their octant indices and with the same label. For instance,
in the case of octant 1 in Fig. 6, if cube {4] is 1 (i.e., cube
with respect to index 4 in the bottom line of Fig. 6), it is
set to the current label and procedure calls Octree_Labe-
ling(2, label), Octree—_Labeling(3, label), and Oc-
tree_Labeling(4, label) are made. It turns out that for
each octant, there exists one vertex point that requires
no procedure call, three edge points that need one call,
and three face points that need three calls to their adjacent
octants. We illustrate an example in Fig. 7 with a configu-
ration of 101000000101000001000110000 for N(v). The la-
beling order by applying the algorithm is the cubic index
0,9, 20, 21, 11, 2, and 16. Compared with serial scheme
in [16], the advantage of using the proposed algorithm is

FIG. 7. An example illustrating the order of points being labeled by
the proposed algorithm.
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that there is no need for an equivalence table and a second-
pass of updating.

ALGORITHM: N(v)_Labeling
INPUT: The coordinate of v of a 3-D binary image.
OUTPUT: Number of connected objects in N(v).
+ Store a local copy of N(v) as cube[26] for labeling;
+ Set label = INIT_-LABEL;/*INIT_LABEL # 1 */
FOR each point in cube with value = 1 DO
» Determine the octant index of the point;/* second
level of the adjacency tree */
» Call Octree_Labeling with the current octant
index and label;
* label = label + I;
end FOR;
Return (label — 2); /* subtract one for INIT_LABEL
= 2 and subtract one for overcounting */
end ALGORITHM.

ALGORITHM: Octree_Labeling
INPUT: Octant index, label.
OUTPUT: labeled cube
FOR the particular octant DO
* IF the value of points in the octant = 1 THEN
* Set label to those points;
* Call Octree_Labeling with adjacent octant
indices and the current label;
end FOR;
end ALGORITHM.

We conclude this section with a depiction of the differ-
ent characterizations of a simple point that have been
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TABLE 3
Different Methods of Characterizing a “Simple” Point
% of 2%
Authors Methods (=67,108,864) Set Comments
Morgenthaler 80 =0 38.72% A Complete
80 =0 (=25,985,144) set of
8H =10 simple
8H =0 points
Lee, Chu, and 8G = 0; 38.72% B A=B
Kashyap 80 =0 (=25,985,144) =CcND
Shrihari, Ydupa, 90.36% C
and Yau 80 =0 (=60,638.936) A,B,CC
Lobregt, 40.07% D
Verbeck and (=26,890,744)
Groen 8G = 0; ABCD
Tsao and Fu 8G = 0; 19.7% E
and {(=13,220,088)
2 windows ECAB
Gong and Simple 0.10% F
Bertrand predicates (=65,536) FCE

FIG. 8. Examples illustrating the need for 6 subcycles and for an
additional constraint of a thinning operation (white voxels are deletable
and dark ones are nondeletable).

discussed so far in Table 3. Note that 8G = 8G(S N
N()), 80 = 80(S M N(v)), 80 = 80(S N N(v), 8H =
SH(S M N(v)), and 8H = §H(S N N(v)). There are 2%
(=67,108,864) different possible configurations of voxels
around a voxel v in N(v). It was asserted in Proposition
2 that our characterization of a simple point is equivalent
to the one given by Morgenthaler (6]. Both Morgenthaler
and our methods classify v as simple in 38.72%
(=25,984,552) of these configurations. Definitions sug-
gested in (7, 12] are overcharacterization of a simple point.
Even though the predicates given by Gong and Bertrand
{11] are simple, their definition only captures 0.10%
(=65,536) of the total 2°® configurations. Tsao and Fu’s
hole detection approach using two checking windows [10,
13] has 19.70% (=13,220,446), but still falls short of the
true simple point set. Therefore, their thinning algorithms
based on such characterization will tend to require more
thinning iterations and longer running time.

3. 3-D PARALLEL THINNING OPERATIONS

As mentioned in the last section, points under consider-
ation for removal by a thinning algorithm are simple bor-
der points of an object. Removing these points preserves
the topological properties. There are many situations
where simultaneous removal of simple border points will
cause complete elimination of the original object (see Figs.
8a and 8c). The common way to eliminate this problem
is to divide each thinning iteration into 6 subcycles ac-
cording to six different types of border points [6, 10, 11].
A border point v = (k, J, i} is of type N(north), S(south),
W(west), E(east), U(up) or B(bottom) if the cubic index
13, 12, 10, 15, 4, or 21 is zero, respectively (see Figs. la
and 8b). However, since the thinning process is carried
out in parallel, the problem persists. The object in Fig.
8a or 8¢ serves as an example again where all of the white
points are deletable because they are simple U-border
points. Dark points are nondeletable because they are not
U-border points. However, removing these white points
simultaneously causes the object in Fig. 8a to be separated
into two and the object in Fig. 8c is completely eliminated.
In order to prevent situations such as these, further condi-
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FIG. 9. (a) and (b) are the thinning results for Figs. 8a and 8c if
sequential rechecking condition is used (white voxels are deletable and
dark ones are nondeletable).

tions need to be checked before a simple point can be re-
moved.

Tsao and Fu in [10, 13] use two checking windows for
each thinning subcycle in an attempt to overcome this
problem. To extract the skeleton, simple border points
are removed if the deletion does not affect the path con-
nectivity in the two checking windows. However, such
computation is still not sufficient. For example, in Fig.
8¢ all the simple border points have connected checking
windows. But, removing them simultaneously will cause
the object to be completely eliminated.

To solve this problem, we use a sequential re-checking
procedure in our algorithm to preserve connectivity. Let
R denote the set of simple border points of a certain type
and @ = § — R; i.e., the set of remaining points if R is
removed from §. After all simple border points have been
labeled, each point v € R is reexamined for path connec-
tivity in N(v). If points in R M N(v) and @ N N(v) (i.e.,
O{R N N@)} U {Q N N(v)}) = 1) are still connected,
then v is removed. Since this process is repeated for the
six different directions, the location of the medial line is
not offset by a large amount. Shown in Figs. 9a and 9b
are the thinning results for Figs 8a and 8c if sequential
rechecking and end-point conditions, which is discussed
next, are used.

The thinning procedure repetitively deletes the border
points of an object that satisfy topological and geometric
constraints. Above, we discussed the topological con-
straints. The geometrical constraints that have been dis-
cussed so far are important to ensure the thinness and
the location of the skeleton. Depending on the desired
result, either the medial surfaces or the medial axes, dif-
ferent geometric constraints can be used. In the next sec-
tion, we survey a number of characterization for a digital
surface point. A new definition for a surface point is
then stated.

3.1. Medial Surface/Axis Thinning (MST and MAT)

The idea of medial surface thinning (or MST) is to
acquire surfaces that are approximately located at the
center line of S by using the thinning operation. To do
that, we need a definition for surface points (or surface
end points) so that an object is thinned into a skeleton
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whose thickness is one voxel thick in at least one of the
three principle directions. There are a number of charac-
terizations of digital surfaces. Tsao and Fu in [10] use
two checking windows to check for a surface point. A
point is classified as a surface point if the number of 1's
in either window is less than 2. For example, all the points
in Fig. 8c are classified as surface points since both the
checking windows have only one 1. In [6], a point v is
called a surface point if v or one of its direct neighbors
is in a thin octant. An octant N%(v) is thin if v and every
direct adjacent point in N*(v) is 6-adjacent to an S point
in N%(v). Using Fig. 8c as an example again, all the points
are in thin octants; hence they are all surface points.
Morgenthaler and Rosenfeld {17] and Reed [18] call v a
surface point if v is 6-adjacent to exactly two § compo-
nents and every point 26-adjacent to v is adjacent to both
of these two S components. Thus, they correctly classify
the voxel v in Figs. 10a and 10b as surface points. But,
it turns out that this definition does not produce desir-
able results for edge points of a surface. For example, in
Figs. 10c and 10d, point v is deletable by their procedure
(clearly, it should be identified as a surface end point).
This classification excessively shrinks an object into a
nonplane like skeleton. Gong and Bertrand also give an
operational definition of a surface point [11]. A point v is
not a border point of a surface if number of 1’s in N(v)
is greater than 8 or if the number is between 4 and 7 such
that at least one of the eight octants has three 6-adjacent
points to v; otherwise v is a surface point. However, the
reasoning behind this characterization is not clear.
From Figs. 10a and 10b, we note that a digital surface

FIG. 10. (a) and (b) are surface points defined by [17, 18]; (c) and
(d) are examples showing that their definitions do not work (Vs in these
examples should be all surface end points).
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FIG. 11. (a) and (b) are two types of surfaces.

consists of two kinds of octants (as shown in Fig. 11a and
11b) which have binary configurations 11110000 (=240)
and 10100101 (=165). Two other symmetric rotations are
10101010 (=170) and 11001100 (=204). Using these kinds
of octants, however, will yield similar results for medial
surface as in [17, 18] since edge points of a surface are
not preserved. In order to preserve surface edge points,
we relax the condition so that an octant may have less than
three points. We now give a characterization to identify
surface points that maintain the edges of the surface.

DEFINITION 1.
{ls ey 8}9

(a) index[N3(v)] € {240, 165, 170, 204}; or (8)

A point v is a surface point if Vi, i €

(b) [N} ()| <3. (9)

where N?(v) denotes the ith octant of N(v), index[] is
the index in base 10 of the binary configuration, and ||
is the number of points in the octant.

We can easily show that if a point v satisfies either Eq.
(8) or Eq. (9), then v is contained in a thin octant [6].
Thus, the set of surface points is a subset of the surface
points of [6]. Also, the set is a superset of the surface
points as characterized in [17, 18] since their surface
points are required to satisfy Eq (8).

Medial axis thinning (or MAT) differs from medial sur-
face thinning in that the extracted skeleton consists of
arcs and/or curves instead of surfaces that approximate
the center line of S. Tsao and Fu in [10] follow a similar
approach as in [12] by deriving an object’s medial axes
from its medial surfaces. An end point is defined as a
point such that on the two checking windows no opposite
8-neighbor exists. However, as shown by the example in
Fig. 8c, using this end-point condition does not thin the
object to a desired skeleton since all the points have no
opposite 8-neighbor in its checking windows; instead, it
will preserve the surface (see Fig. 14¢). In a later paper
[13], Tsao and Fu give an operational definition of a
medial axis end point which extracts the skeleton directly.
Each subcycle of their thinning algorithm consists of two
steps. Every simple border point is labeled at the first
stage. In the second stage, nonend points are then deter-
mined. We believe that the simple definition of end point
of an arc, as defined in Section 2.1, is sufficient to extract
the medial axis if the topological conditions are satisfied.
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Based on the topological and the geometrical conditions
discussed thus far, we now present our thinning opera-
tion 1.

Let T, denotes a thinning operation with the sequence
of directions U, B, N, S, W, and E (see Fig. 8b). T,
repetitively deletes one type of border points of § in paral-
lel (or simultaneously) satisfying the following conditions
until no more points can be removed:

(CHBGES N N@w) =0

CHOS N Nwy =1

(C3) O{R N Ny} U {Q N N(@)}) = 1 where R is the
set of border points that satisfies (C1) and (C2) and Q =
S - R.

(C4) (1) v does not meet the surface end point condition
(Egs. (8) and (9) in Definition 1), or

(i) |Q M N(v)| = 2 where |Q N N(v)| is the number

of points in {Q M N(v)}.

3.2.

In this section, several examples that demonstrate the
effectiveness of the proposed algorithm are given (see
Figs. 12, 13, and 14). These examples are constructed
using a geometric modeler called Pro/Engineer (a product
of Parametric Technology Corp., MA) [19], followed by
a 3-D discretizer. Pro/Engineer is a parametric, feature-
based solid modeling system with Boundary Representa-
tion (B-rep) as its internal representation. Because parts
are created using dimension-driven parameters and solid
features (holes, slots, fillets, drafts, etc.), modifications
of a geometry can be achieved with ease for ‘‘what-if”’
analyses. For more details about the operation of this
modeler, refer to [19].

In order to carry out the thinning operation, we need
to represent the volume of these objects with an array of
voxels Z? (refer to Section 2.1 for basic definitions). The
discretization process that converts Pro/Engineer’s inter-
nal B-rep into voxels is done by a ray tracing and a filling
operations. Rays are traced from three different planes,
XZ, XY, and YZ for an accurate geometric representation.
For each tracing plane, increments of resolution size are
added in the two principle directions. Pro/Engineer mod-
eler provides a function called *‘pro_ray_x_model’’ that
finds intersecting points between a direction vector and
a geometric entity. Each intersecting point is rounded into
an integer coordinate to represent the boundary point of
the object. In order to obtain a complete voxel model, a
filling algorithm is needed to fill the interior of the object
(refer to [20] for details).

In Fig. 12a, three L-shaped objects are assembled to-
gether using Pro/Engineer’s ‘‘assemble’’ function, and it
is converted to its voxel representation, shown in Fig.
12b, using the proposed digitizer. Since thinning operation
is a non-linear process and it preserves topology, the

Experimental Results



3-D MEDIAL SURFACE/AXIS THINNING ALGORITHMS 471

FIG. 12.
{(d) are its medial surface and medial axis using Ty, respectively.

skeleton of this set of unioned objects consists of skeleton
of each L-shaped object connecting to each other. Figures
12¢ and 12d are the medial surface and the medial axis,
respectively, for the part in Fig. 12b. It is clear from the
result that the medial surface and the medial axis comprise
of surfaces and arcs, respectively.

In general, there are two kinds of boundary noise: im-
pulse and digitization noise. In Fig. 13a, random impulse
noise is added to the surface of the three 1.-shaped object
in Fig. 12b. A connecting rod designed using the Pro/
Engineer solid modeler is displayed in Fig. 14a. The voxel
representation of the connecting rod has digitization noise
introduced at its boundary (Fig. 14b). By comparing the
medial surface results using T\, (the proposed algorithm)
and Ty, (the thinning algorithm in [10]) we see that T,
produces slightly cleaner medial surfaces than T, (Figs.
13b and 13c, and Figs. 14c and 14d). This observation is
much more obvious in the case of the medial axes. Clearly,
T,.« produces more desirable medial axes than 7;as shown
in Figs. 13d and 13e, and Figs. 14e and 14f. In Fig. 14e,
T, tends to preserve surfaces rather than arcs or curves,
as mentioned in the last section.

{a) An object consisting three L-shaped components designed using the Pro/Engineer modeler; (b) its voxel representation; (c) and

In Fig. 15, the number of deleted points by the two
algorithms is plotted against the number of thinning itera-
tions for the thinning results in Fig. 14. For the medial
surface extraction, it was found that 7, required more
iterations than T}, but with comparable CPU time on a
Sun 4 workstation and comparable thinning results (see
Figs. 14c and 14d). The “‘iteration’’ measurement used here
is defined as a single application of the thinning process in
all six (U, B, N, S, W, and E) directions. However, the
main difference lies in the medial axis extraction. T, required
61 thinning iterations with 16,372 CPU seconds whereas our
algorithm required only 7 iterations with 28.4 CPU seconds.
This result shows the speed efficiency of our algorithm over
Tsao and Fu’s [10]. It was shown at the end of Section 2
that Tsao and Fu’s simple point characterization only has
19.7% of the total simple point set. Hence, their algorithm
would require more thinning iterations than ours because
their set of deletable points in each iteration is smaller than
ours. It should be pointed out, however, that thinning itera-
tion is not the only factor that would affect the computation
speed, the computation cost of determining simple nonend
point should also be considered.
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FIG. 13.
extracted medial axes using Ty and T, respectively.

4. SKELETON MODELING

Most of the thinning algorithms such as the ones in [6,
10, 11, 14] really do not consider the noise problems
associated with thinning operations. Although these algo-
rithms satisfy the topological and the geometrical con-
straints, the extracted skeletons usually do not reflect the
intended geometric features in the original shape (in this
section, we will use *‘skeleton’ and ‘‘medial axis’ inter-
changeably). In (13], Tsao and Fu characterize the effect
of noise as being either undesired skeleton branches created
due to noisy boundary, small holes, and/or cavities. The
noise problems can be reduced by (1) preprocessing the
noisy input image. (2) postprocessing the extracted skeleton
to remove unwanted branches, and (3) smoothing during
the thinning operation. It was shown in the last section that
the proposed thinning algorithm has a smoothing effect on

(a) Noise added to the three L-shaped object in Fig. 12b; (b, c¢) Extracted medial surfaces using Ty and T, respectively; (d, e)

the resulting skeleton. In this section we consider both the
pre- and post-processors. A robust skeleton is constructed
using the following six-stage procedure:

(1) Preprocess the noisy input image by a 3-D digital
filter, (e.g., maximum and minimum operators in [13, 21]),

(2) extract skeleton using 7).

(3) obtain a distance map of the skeleton,

(4) classify skeleton points,

(5) remove noise in the skeleton by thresholding, and

(6) construct the skeleton model.

There are many digital filters that are designed for the
purpose of smoothing digital images with noise. One of
the simplest local filters is the combination of maximum
and minimum operators as discussed in [13, 21]. For a 3-
D binary image Z°, the local maximum and minimum
operators are defined as: S,,,(Z%) = {v|v € Sorv € N(v')
for some v’ in S}and §,,,(Z*) = {vlvnot € Sorv € N(v')
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FIG. 14. (a) A connecting rod designed using the Pro/Engineer modeler, (b) its voxel representation with digitization noise; (¢, d) extracted

medial surfaces using Ty and Ty, respectively: (e, ) extracted medial axes using Ty and Ty,

for some v’ not in S}. The ordering of the maximum and
the minimum operators results in two types of filters: FU1
and FU2. They are defined as FU1"(Z%) = min”(max"(Z*))
and FU2%(Z%) = S"., (8%, (Z°) where n is the order of
FUI and FU2 and is the number of times the operator is
applied to the 3-D image Z*. It turns out that FU 17 tends
to expand objects such that all the small holes or concavi-
ties with thickness less than 2n are eliminated. The opera-
tor, FU2", on the other hand, shrinks objects, and convex-
ities with thickness less than 2n are eliminated. This is
very similar to the discussion on the expanding and shrink-
ing operators for 2-D images in [21]. The noisy 3-D objects
in Figs. 13b and 14b are used as examples to test the
effectiveness of the two filters. Since most of the noise
on the boundary of Fig. 13b are concavities with thickness
of one, it is obvious that applying first-order FU1 to the
original shape produces a better skeleton than first-order
FU2, as shown in Figs. 16a and 16b. However, in order

respectively.

100000
—2— MSTif (48.6 secs)
10000 § —a— MST (59.3 secs)
—O— MATH (16,372 secs)
1000 ¥ —&— MAT (28.4 secs)
100 1

Deleted Voxels

.001 AT T
0 10 20

30 40 50 60

Thinning Iterations

FIG. 15. Number of thinning iterations vs deleted points for the

connecting rod (41,399 voxels).
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FIG. 16. (a, b) Extracted skeletons of the noisy three L-shaped
object after applying first-order FUI and FU2; (¢, d) skeletons of a
connecting rod after applying third-order FU1 and FU2.

to produce a desirable skeleton, we need to have some
priori knowledge about the noise such as the correspond-
ing contaminated voxels. Furthermore, not only the com-
putation effort of applying FUl and FU2 are large for
objects consisting of large data points, the operators will
not always remove spurious skeleton branches com-
pletely (Fig. 16¢) and sometimes even disconnect the ob-
ject if the order of the filter is not chosen correctly (Fig.
16d). Therefore, these kinds of operators need to be used
with caution, and we must rely on some sort of post-
processing techniques to overcome the problems with
noise. After the skeleton is extracted using T, the dis-
tance mapping algorithm expands each skeleton point to
its neighboring points until the object’s boundary is
reached. The Euclidean distance between the first bound-
ary point reached and the skeleton point is computed and
assigned to the skeleton point. In addition to the distance
information, each point of the skeleton needs to be classi-
fied according to the number of 26-neighbors it has. The
classification scheme is used not only to remove noise
spurs, but it forms the basis for building the skeleton
model. However, it turns out that using the number of 26-
adjacent neighbors does not always classify each skeleton
point correctly. An example is shown in Fig. [7a where
we denote regular and *‘T"” as points with two and three
26-neighbors, respectively. For clarity we give this exam-
ple in 2-D, but it is easily extended to 3-D cases. In order
to build a skeleton model, there should have been only
one “‘T"’ point rather than three. To correct this problem,
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we can classify a point with three regular neighbor points
as a ‘T’ point and label the point as *“T"’ type immedi-
ately, and any 26-adjacent neighbors of this ‘T’ point
will be considered as regular points. In addition, we will
classify a point with four regular neighbors as an **X”’
point. The result of using this simple scheme is shown in
Figs. 17b and 17c. However, this scheme is insufficient
for other types of classifications such as the one shown
in Fig. 17d. In this example, we will need a more robust
verification procedure that can determine the number of
arcs connecting to the *“T"’ point.

After verifying each skeleton point, we threshold the
result by removing those branches with length less than
a pre-defined length / (the post-processor). Shown in Fig.
18a is the skeleton in Fig. 14f with noise that has been
effectively removed by using this simple operator with [ =
10. However, the operator does not always yield desirable
results because the predefined length must be determined
in advance. After removing those noisy skeleton edges
(or branches), each skeleton point needs to be reclassified
to ensure the correctness of the model (see Fig. 18b).

Based on the adjacency and the radial distance informa-
tion, we construct a skeleton model of Fig. 18b in Tables
4 and 5. Table 4 shows the result by applying the classifi-
cation procedure to the skeleton in Fig. 18b. The *'Dis-
tance”’ column represents the Euclidean distance between
the skeleton point and its nearest boundary point. For
clarity, we omit points with exactly two 26-neighbors (i.e.,
regular points). An Edge table is constructed for retaining

FIG. 17. (a) An example of misclassified point type (* are regular
points); (b, ¢) corrected classifications; (d) an example where the pro-
posed scheme is insufficient.
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FIG. 18. (a) Skeleton in Fig. 14e with noise removed by the thresh-
olding operation; (b) skeleton with points and edges classified.

the adjacency information (see Table 5). Both the **Point™’
and the ‘“Edge’’ tables constitute the so-called skeleton
model.

5. APPLICATIONS OF THE SKELETON
MODEL IN MANUFACTURING

In the past decade, many commercial computer-aided
engineering (CAE) analysis software tools have devel-
oped for engineering analysis purposes. However, these
facilities are often not fully integrated, and they require
human interaction, not to mention the lengthy preparation
and simulation time that might be required. Part of the
reason is that part descriptions of 3-D CAD models are
not represented in a form which can be utilized directly
in manufacturing analysis. In order to overcome these
problems, geometric reasoning based on a high-level rep-
resentation needs to be carried out. The skeleton model
discussed in the last section can be considered as a simpli-
fied representation of a geometry that preserves topology.
In this section, we propose to use the skeleton model to
predict casting and forging defects.

5.1

Casting is one of the most popular methods for achiev-
ing a desired complex shape in the metal processing indus-

Casting Defect Analysis

TABLE 4
Point Table for the Medial Axis of the Connecting Rod
Point number Coordinate
D (x, ¥, ) Distance Point type
D (6, 4, 11) 4.1 E
P> (44, 6, 11) 4.6 E
D3 (26. 22, 10) 7.2 T
P (26, 78, 10) 7.3 T
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TABLE 5
Edge Table for the Medial Axis of the Connecting Rod
End points
Edge number (pis p)) Length
e (P, p3y) 28.5
€ (p2. p3) 25.1
€ (p3. Ps) 48.0
€y (Pss P4) 84.5

try. Parts (e.g., connecting rods) are made by pouring hot
liquid metal into the mold cavity. When solid, metal is
the shape of the part [22]. Due to its simplicity, the solidi-
fication modulus (SM) value has been widely used to de-
termine the relative freezing time among various segments
of a casting for evaluating global casting soundness [22,
23]. The SM calculation is based on the subdivision of a
complex part into simple subcomponents and its value is
defined as the ratios of the volume over the surface area
of each subcomponent. Intuitively, regions of a casting
with a low SM value cool faster than those with high SM
value because a low-SM region has a greater surface area
than a region with high SM value. Therefore, it is assumed
that the SM of a section must be greater than its neigh-
boring SM in order to act as a feeder to its neighboring
sections; otherwise, the flow of liquid metal will be
blocked. By comparing SM among subdivided regions,
the location for the riser (a riser is defined as a reservoir of
liquid metal [23]) can be determined. The task of dividing a
part into sub-components is, however, not fully deter-
mined. Since most complex castings are made up of a
combination of simple geometries, such as T, X, L, ribs,
bosses, recognition of these geometries can be considered
as a first step in solving this subdivision problem.

Kotschi and Loper [23] have generated graphical data
for T and X sections of castings by using computer analy-
sis based on the SM concept. Consider the T shape shown
in Fig. 19 used in their study. The subdivision is placed
at a length equal to the thickness of each arm away from
the radius R. The order of solidification of these regions
can be determined from its SM values. Using the heuris-
tics provided by them and the distance mapping informa-
tion in the skeleton model, we can determine the thickness
of each arm and locate places to sub-divide castings into
subcomponents for SM analysis.

Let us take the connecting rod in Fig. 14b as an exam-
ple. Using our medial axis thinning operation T, and the
proposed postprocessing technique we extracted a clean
skeleton in Fig. 18a. Though the radius information is
available in the skeleton model, it cannot be considered
as the true thickness of the arms in the connecting rod
due to variations of its cross sections. Instead, we should
compute the SM value for the cross section of each skele-
ton point in the component. The averaged SM value of
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SM1

t
SM3 I

FIG. 19. T section composed of a supporting arm of thickness T
and a cross arm of thickness ¢, joined with fillets of radius R [23]. The
skeleton is drawn in dark lines in the center of the T section.

each arm is used in the equation SM = 2/T to obtain the
averaged thickness ¢ or T[24]. We then determine a cutting
plane offset by the averaged thickness ¢ + 1/2 T from the
“T”” junction point as shown in Fig. 19. SM values are
computed for each subcomponent, and risers can be rec-
ommended for components that have large SM values
compared to its neighboring components. See Fig. 20 for
an illustration of such computation. Details can be found
in [24].

5.2. Forging Defect Analysis

Forging is a manufacturing process that deforms heated
metal parts into a specific pattern using a hydraulic press
or a power hammer [25]. The primary objective of forging
design is to guarantee sufficient metal flow so that initial
part geometry can be obtained without any defects. Two
of the most important design features in forging are the

Cutting
Plane

: recommended
riser locations
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rib and the web [25]. A rib is a projection from the web
that is either located at the periphery or within a forging
part in a direction parallel to the ram stroke. The web of
a forging is the relatively thin section of the forging that
lie between ribs and other forged elements extending from
the surfaces of the web (see Fig. 21 for the rib and the
web of a connecting rod). The ease of manufacturing a
rib depends mainly on the ratio of its height and width.
A deeper and thinner rib usually demands greater forging
pressure. An important rule of thumb in forging design is
that rib width should never be more than the web thick-
ness; otherwise, the flow of the material filling the rib
may cause a void in the web directly below the base of
the rib [25]. Moreover, there are limits on the minimum
web thickness because thin webs require greater forging
pressure and tend to cause defects. To apply these heuris-
tics for defect detection, ribs and webs must first be identi-
fied in a forging design.

Marefat and Kashyap in [26] propose an attributed adja-
cency graph and a subgraph matching scheme for feature
detection (see [26] for other approaches). Although their
subgraph matching approach can be extended to deter-
mine forging features such as ribs and webs for parts
consisting of planar surfaces, it is difficult to determine
these features for surfaces with free form (or sculptured)
nature because of the representational difficulties. In fact,
many of the forging geometries consist of free-form sur-
faces rather than polygonal faces (e.g., the connecting rod
in Fig. 21). Medial surface model, however, is invariant to
surface curvature and can be used to detect rib and web
features for free-form objects. After the medial surface
is extracted using our thinning operation, surface patches
need to be determined for the model. The problem of
forming surface patches boils down to the task of grouping
points that lie on the same surface. The approach in [27]
can be used to group points that belong to each surface

Cutting

FIG. 20. Computations of section modulus and recommendation of riser locations {24].
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patch by using principle direction frames or by using simi-
lar Gaussian and mean curvature. To obtain these local
characteristics requires estimation of tangent and curva-
ture information at these points.

After surface points have been classified into different
pathces, a topological graph showing the relationship be-
tween those patches can be formed. In Fig. 22a, topologi-
cal graphs for a web-rib—web object is illustrated. The
surface normal of each surface patches is in one of the
principal directions. Using the normal direction, the me-
dial surface that correspond to the rib can be determined
as perpendicular to the forging direction (surface $2). A
web, on the other hand, has normal direction parallel to
the forging direction (surfaces §1 and §3). With the radius
of the associated medial surface model, an average thick-
ness can be acquired for each surface patch. Multiple
web-rib—web regions can also be detected by using a
simple graph matching technique as shown in Fig. 22b.
It is easily seen from Fig. 22 that medial surface is invari-
ant with surface curvature because polygonal objects have
the same medial surface models as its free-formed coun-
terpart. With this knowledge, a wider coverage for differ-
ent rib and web geometry can be achieved.

6. CONCLUSION

We have presented a parallel thinning algorithm that
can be used to extract either the medial surface or the
medial axis of a 3-D object. The preliminary results have
shown that our algorithm produces more desirable skele-
tons than existing algorithms. Pre- and postprocessors
can be used to reduce noise spurs in the skeleton model.
The constructed models are proposed for predicting forg-
ing and casting defects. Because of its descriptive power
of free-formed surfaces, skeleton model, in our belief, has
great potential in providing manufacturing features that
are needed in an integrated design and manufacturing
environment. However, further work is certainly needed
in several areas in order to fully establish such integration.
More robust pre- and postprocessors are needed. A veri-

FIG. 21. Rib and web of the connecting rod in Fig. 14b.
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FIG. 22. Topological graph for ribs and webs.

fication scheme that can handle possibly misclassified
points in medial axis is also warranted. A closer study of
digital surfaces is essential for building a noise-free medial
surface model.
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