
Meshing Pipeline User Guide

BioMesh3D 0.1 Documentation

Center for Integrative Biomedical Computing
Scientific Computing & Imaging Institute

University of Utah

Software download:

http://software.sci.utah.edu

Center for Integrative Biomedical Computing:

http://www.sci.utah.edu/cibc

This project was supported by grants from the National Center for Research Resources
(5P41RR012553-14) and the National Institute of General Medical Sciences

(8 P41 GM103545-14) from the National Institutes of Health.

Author(s):
Brett Burton, Jess Tate, Jeroen Stinstra, Ayla Khan

Contents

1 Overview 3

2 Meshing pipeline stages 4
2.1 Introduction to Biomesh3D . 4

2.1.1 Pipeline Scripts . 4
2.2 User Variables: model config.py . 5
2.3 Initializer: BuildMesh.py . 6
2.4 Stage 1: MakeSolo.py . 6
2.5 Stage 2: ComputeMaterialBoundary.py 6
2.6 Stage 3: ComputeMaterialMedialAxis.py 7
2.7 Stage 4: ComputeSizingField.py . 7
2.8 Stage 5: GenerateSeeds.py . 8
2.9 Stage 6: DistributeParticles.py . 9
2.10 Stage 7: BuildMaterialInterfaceMesh.py 9
2.11 Stage 8: BuildVolumetricMesh.py . 10

3 Limitations and known issues 11

4 Preparing data for meshing pipeline 12
4.1 Segmentations with Seg3D . 12

5 Example dataset: Mickey 13
5.1 Example Data Sets . 13

6 Example dataset: Tooth 17
6.1 Creating a segmentation using Seg3D 17
6.2 Running BioMesh3D . 22
6.3 BioMesh3D Output . 24

2

Chapter 1

Overview

This manual gives an overview of how to operate the BioMesh3D pipeline in its
current state. The BioMesh3D project aims to develop an easy to use program for
generating quality meshes for use in biological simulations. The project’s primary
goal is to provide a solution that does not require much interaction from the user and
automatically generates a proper mesh.

Currently BioMesh3D is available as a prototype pipeline made up of a series of
Python scripts, running sequentially, that generates a mesh from a segmented volume.
Although a complete user interface is planned for the program, one is not currently
available.

CHAPTER 1. OVERVIEW 3

Chapter 2

Meshing pipeline stages

2.1 Introduction to Biomesh3D

The BioMesh3D program simplifies the meshing pipeline by breaking it up into
eight basic stages described below. Each stage fulfills specific tasks and produces
specific outputs for later use downstream. SCIRun and Python are required to run
the BioMesh3D pipeline.

Python is relatively simple to acquire, and SCIRun is an open source software
package that can be downloaded from http://www.scirun.org.

SCIRun software tools are required to run the BioMesh3D pipeline. SCIRun can
be built on OSX and Linux platforms using the build.sh script that is included in
the source distribution. Use build.sh --help for usage information. Currently no
other dependencies are required to run the meshing pipeline.

2.1.1 Pipeline Scripts

Though BioMesh3D will eventually have a more streamlined user interface, the current
system requires a call to a Python script. This Python script is generated as part
of the SCIRun distribution and can be found in the bin/FEMesher directory of
SCIRun. The script that the user has to call is the BuildMesh.py script. This
script will recursively call all the other scripts to complete the mesh.

The BuildMesh.py needs a description of the model it will mesh; this model is
defined in a second Python script that initializes the meshing parameters. This script
is a user generated document that defines the path to the segmentation labelmap,
the desired output directory, the names of materials to be meshed, and various other
parameters discussed in the next section. Examples of these model config.py can
be found in the SCIRunData dataset in the folder FEMesher.

4 Chapter 2

http://www.python.org
http://www.scirun.org
http://www.scirun.org

In addition to the model configuration Python script, there are 5 other flags that
can be used directly after the BuildMesh.py call.

-h provides a help menu with a brief description of each stage
-s allows the user to define what stages to run (for example: ...BuildMesh.py -s2:5
will run stages 2 thru 5)
-i executes the BioMesh3D pipeline interactively, pausing between each step and ask-
ing if the user would like to continue, while displaying the results within SCIRun.
-d displays the output of key stages of the pipeline using SCIRun without running
any of the meshing pipeline. If used alone the files must already exist (that is, the
pipeline must have already been run) in order for this flag to work
-p path to executables used in the pipeline [only required if the script cannot find the
SCIRun programs in the default location].

With the exception of -h, each of these flags can be used in tandem. For example,
-s2:5 -i will execute the pipeline interactively from stage 2 to stage 5. Once each
stage has been completed, the output will be displayed in SCIRun and the screen will
prompt the user to continue. (Note: with -d the command would need the files in
stages 2 thru 5 to already exist.)

2.2 User Variables: model config.py
The model_config.py file contains various variables that can be altered by the

user, including:

• model_input_file - path to the input nrrd file

• model_output_path - path to the desired output directory

• mats - array from 0 to n− 1 where n represents the number of materials

• mat_names - names the user wishes each material to be called (must be the same
size as mats)

• mat_radii - radius of tightening during the tightening process (If set to 0,
tightening will be skipped.)

• refinement_levels - number of levels that the medial axis will use

• max_sizing_field - sets a cap on sizing field. The smaller the number, the
more dense the final mesh.

• tetgen_joined_vol_flags - sets parameter flags for tetgen in generating the
final mesh

• num_particles_iters - defines the number of iterations the particle system
will execute

CHAPTER 2. MESHING PIPELINE STAGES 5

• max_procs - set the maximum number of processes run by the particle system

2.3 Initializer: BuildMesh.py
BuildMesh.py initiates the entire pipeline. It receives the command line flags -h,

-s, -i, -d, -p or, by default, runs the entire meshing pipeline if no flags are set. Once
these preliminary decisions are made, this script calls each of the following stages in
order.

2.4 Stage 1: MakeSolo.py
MakeSolo.py first accepts the nrrd file defined in the model_config.py file and

pads it with 0 in all dimensions. The newly padded nrrd is unoriented and a trans-
formation matrix is extracted for use in the final stage of the pipeline (in order to
realign the final data with the original data). Each material is then isolated and a
separate nrrd file created for each material that is tightened (if mat_radii 6= 0 in the
model_config.py file) and set aside for the next stage.

Output files are:

• original-nrrd-name_unorient.nrrd

• original-nrrd-name_transform.tf

• material.solo.nrrd

• material.tight.nrrd

• material.lut.raw

• material.lut.nrrd

• medial_axis_param_file.txt

• make-solo-nrrd-runtime.txt

This stage does not display anything when the -d flag is active.

2.5 Stage 2: ComputeMaterialBoundary.py
The material boundary is computed from the tightened nrrd files from the previous

stage. These files are converted to SCIRun fld files before their respective isosurfaces
are extracted.

Output files are:

6 Chapter 2

• material_isosurface.ts.fld

• material.tight.fld

• isosurface-all.ts.fld

• compute-material-boundary-runtime.txt

This stage displays the isosurfaces of all materials together when the -d flag is
active. SCIRun users can view individual materials by adjusting which field is called
in the ReadField module’s user interface.

2.6 Stage 3: ComputeMaterialMedialAxis.py
Both the speed and the quality of the meshing pipeline are critically dependent on

the quality (accuracy AND consistency) of the medial axis computation. We have
implemented a medial axis algorithm that extracts the medial axis by way of point
cloud approximation. The current method produces a point-cloud over the entire
volume and computes which points are closest to the medial axis. These points are
then used to produce another homogeneously spaced point-cloud in the region of each
previously computed medial axis point, where it is again checked for closeness to the
medial axis. This process iterates through a user-specified number of levels, each
time honing in closer to the desired medial axis. Due to the number of levels and the
amount of point-cloud particles produced, this stage can take a long time.

Output files are:

• material_ma.ptcl

• material_ma.pc.fld

• ma-all.pc.fld

• compute-material-medial-axis-runtime.txt

This stage displays the medial axis points of each material within the isosurfaces
of each material together when the -d flag is active. SCIRun users can view individual
materials by adjusting which field is called in the ReadField module’s user interface.

2.7 Stage 4: ComputeSizingField.py
The medial axis points previously generated are used to generate a sizing field nrrd

file for each material, based on the distance of the medial axis to the isosurface of
the material. Also, a zero-crossing algorithm is used to isolate the boundary of each
material generated in the MakeSolo.py script.

CHAPTER 2. MESHING PIPELINE STAGES 7

Output files are:

• material_crossing.nrrd

• material_lfs.nrrd

• material_sf_init.nrrd

• material_sf.nrrd

• compute-sizing-field-runtime.txt

This stage displays the sizing field and associated grid of only one material at a
time when the -d flag is active. SCIRun users can change which material they are
looking at by adjusting which field is called in the ReadField module’s user interface.

2.8 Stage 5: GenerateSeeds.py
Junctions where materials meet are determined and seed-points are randomly placed

along these junctions. A dual junction (where two materials meet) creates a surface,
the filename has a d in front of it followed by the two material labels. Triple junctions
create lines represented by t and the three material labels involved, and quadruple
junctions make points (q followed by four material labels).

Output files are:

• generate-seeds-runtime.txt

• seeds/ -

d01_seed.pc.fld

d01_seed.ptcl

etc...

t012_seed.pc.fld if there are triple interfaces

t012_seed.ptcl

etc...

q0123_seed.pc.fld if there are quad interfaces

q0123_seed.ptcl

etc...

seeds-all.pc.fld

This stage does not display anything when the -d flag is active.

8 Chapter 2

2.9 Stage 6: DistributeParticles.py
Using the sizing field as an energy metric (the smaller the sizing field value, the less

energy), the seeds that were randomly placed on the surface of the material adjust
themselves to minimize energy. In general, the closer a seed is with its neighbor, the
more energy exists between them. These particles will move away from each other in
an attempt to minimize energy while still being forced to remain on the surface. By
moving, they interact with other particles and move again in an attempt to minimize
energy. The sizing field determines the energy that each particle has as they adjust
themselves into a state of lowest energy. Once the amount of iterations specified in
the model_config.py file are met, the algorithm quits.

Output files are:

• distribute-particles-runtime.txt

• ops-output-#.txt

• input_seeds/

d01_seed.pc.fld

etc...

• junctions/

psystem_input.txt

particle_params.txt

m1.txt

particle_params.txt_#.pts

particle_params.txt_#.ptcl

particle_params.txt_#.pcv.fld

particle_params.txt_#.pc.fld

particle-all.pcv.fld

particle-all.pc.fld

This stage displays the final position of all particles for each material together
when the -d flag is active.

2.10 Stage 7: BuildMaterialInterfaceMesh.py
Using the particle system points, surfaces are generated that share nodes.

Output files are:

CHAPTER 2. MESHING PIPELINE STAGES 9

• build-material-interface-mesh-runtime.txt

• junctions/

particle-union.pts

particle-union.node

particle-union.m

particle-union.ts.fld

particle-union.1.node

particle-union.1.face

particle-union.1.ele

material.m

material.ts.fld

This stage does not display anything when the -d flag is active.

2.11 Stage 8: BuildVolumetricMesh.py
Tetgen is used to create a volumetric mesh of each material and of the materials

together as a joined field based on the surfaces produced in stage 7.

Output files are:

• build-volumetric-mesh-runtime.txt

• junctions/

particle-union.tets-labeled_transformed.fld

This stage displays the tetrahedralized mesh of the entire material with an overlaid
quality tet-mesh that uses a scaled Jacobian measure when the -d flag is active.

10 Chapter 2

http://tetgen.berlios.de

Chapter 3

Limitations and known issues

• Data will be node-centered throughout pipeline - Though data can be
node-centered or element-centered, the pipeline (which accepts both) will ulti-
mately node-center all data; thus, a shift will be perpetuated in any element-
centered data that is used.

• Performance - The current system has not yet been optimized and as a result
the system may take a few days to render a mesh for a large dataset. [For exam-
ple on our system — On our system for example,] a typical torso segmentation
(512 by 512 by 400) takes, on average, one week to run to completion. Further-
more, significant hard drive space is required for these datasets (10 GB for said
torso meshes). Smaller datasets, with only two materials, should require much
less space (less than 1GB) and will be much quicker (less than a day).

• 3D Data only - BioMesh3D does not compensate for data of other dimensions.

• Thin segmentations produce inaccuracies - Blood vessels and other thin,
narrow (approx. 1 - 2 voxels thick) structures might be eliminated by the
tightening algorithm. Tightening can be turned off by setting mat radii = 0 in
the model config.py file.

• Interactive mode over forwarded X11 connections - SCIRun has been
known to crash when volume-rendering over forwarded X11 connections, there-
fore we recommend against running BioMesh3D in interactive mode over an
X11 connection. Instead, run the pipeline automatically, copy the files to your
local machine, and run the pipeline in the -d mode, which only will do the
visualizations and use all the precomputed files.

• Large data sets require more memory than is available - A temporary,
hard-coded fix has been implemented for relatively large datasets by multiplying
the binning radius by 4. This will be changed to allow for a more dynamic
handling of method so that large data sets will automatically reduce the size of
the binning radius and allow for proper memory management.

CHAPTER 3. LIMITATIONS AND KNOWN ISSUES 11

Chapter 4

Preparing data for meshing pipeline

4.1 Segmentations with Seg3D
Segmentations of many kinds of data can be done using Seg3D. With this program,

domains can be identified and assigned values from images, such as various tissue-
types from an MRI scan. Seg3D will read many formats of slice data, such as a
DICOM file and other formats generated by imaging scanners. After segmenting each
of the tissue-types, Seg3D can then export the segmentation in nrrd format, which
is used by BioMesh3D. A brief demonstration of how to use Seg3D is included in
the tooth example (Chapter 6). See the Seg3D documentation for a more extensive
explanation of it’s tools and capabilities.

12 Chapter 4

Chapter 5

Example dataset: Mickey

To demonstrate the functionality of BioMesh3D, we will use a simple, low-resolution
model. This example will walk you through how to access the example data sets and
use SCIRun to create a 3D Mickey model (the head and ears of Mickey Mouse).

5.1 Example Data Sets
To obtain the Mickey data set, download the SCIRunData.zip file from the

SCIRun website. The SCIRunData set can be found in the SCIRun 4 file/data repos-
itory. All the example files are stored in the FEMesher directory.

Select the Mickey folder and download the two files (mickey-unorient.nrrd and
model_config.py into the directory from which you would like to work. The *.nrrd file
is our data file that is to be meshed. The model_config.py file is a Python script full
of variables that the user is able to manipulate as described above in Chapter 2.

For BioMesh3D to work on your data set, the model_config.py file must point to
the Mickey file as well as an output directory (it does not matter whether the output
directory is the same as the input directory). Open the model_config.py file and point
the ’model_input_file’ and ’model_output_path’ variables at the proper paths. These
paths can be relative to the model_config.py file. The default settings assume that
the segmentation file is in the same directory as the model_config.py file.

Open a terminal from which you can run command-line code. Type the command
described in the first section of Chapter 2 (If you are already in the SCIRun directory,
there is no need to include the path to your SCIRun directory.). The files will generate
themselves as the program runs. If you would like to view the stages as they progress,
use the -i flag. If you wish to only run certain stages, use the -s flag; however, if this
is a fresh run, you will have to start from stage 1 in order to get any results.

The following results were obtained by using the following command: From the
SCIRun directory

CHAPTER 5. EXAMPLE DATASET: MICKEY 13

http://www.scirun.org

bin/BuildMesh.py -i
<path-to-mickey>/Mickey/model_config.py

Figure 5.1. Stage 2: Extract Material Surfaces - Isosurfaces of the three materials
that make up Mickey (head, left-ear, and right-ear)

Figure 5.2. Stage 3: Compute Medial Axis - Medial axis points of the mickey.

14 Chapter 5

Figure 5.3. Stage 4: Compute Sizing Field - Computed from the medial axis, the
sizing field is a distance map from the medial axis points to the surface of the material.
Sizing field files are only shown one material at a time (this being the head).

Figure 5.4. Stage 6: Run Particle System - A high-resolution particle system (that is
when max sizing field and SIZING SCALE VAR values are low) will produce tightly
packed particles such as these.

Stage 7: Generate Surface Mesh (no visualization)

CHAPTER 5. EXAMPLE DATASET: MICKEY 15

Figure 5.5. Stage 8: Generate Volume Mesh - Final mesh (left) and associated quality
field (right). Red tetrahedra are higher quality than blue.

16 Chapter 5

Chapter 6

Example dataset: Tooth

This example will walk you through the basics of generating a mesh from raw data.
There are two basic steps: creating the segmentation and running the BioMesh3D
script. The data file is available in the SCIRunData/FEMesher/tooth/volume-tooth
directory. Similarly, in the SCIRunData/FEMesher/tooth directory, there is a tooth.nrrd
file that is similar to the one that will be created in the tutorial in the following sec-
tion. Therefore, the first section of the tooth tutorial, wherein Seg3D is used to make
a segmentation, can be skipped. However, Seg3D is a useful tool that is compatible
with BioMesh3D and SCIRun, so it is encouraged to use this tutorial or the tutorial
provided for Seg3D to become familiar with it if the user intends to make meshes from
raw scan data.

6.1 Creating a segmentation using Seg3D

Open Seg3D and create a new project. Under the ‘File’ menu, choose ‘Import Layer
From Single File’ and open tooth.nhdr that was just downloaded or from the path
mentioned above. Import the file as a ’Data Volume.’ A grayscale volume will appear.
Become familiar with the basic controls and navigation in Seg3D. Be sure to ‘save
session’ often while you segment to ensure that you do not lose any data. For further
instruction in the operation of Seg3D, please consult the Seg3D documentation.

With the tooth volume loaded, perform a median filter on the data. This filter will
make it easier to perform segmentation tasks later. This is done by clicking ‘Median’
option under the ‘Data Filters’ menu. Leave the radius at 1 and press the ’Run Filter’
button. Another layer will appear containing a blurrier but smoother tooth volume.
Notice that the three main intensity regions of the tooth are more uniform (Figure
6.1). we will label each of these three regions to be identified by BioMesh3D and
other programs.

We will begin with the darkest region of the tooth. Select ‘Neighborhood Con-
nected’ under the ‘Data Filters’ menu. This filter will use seed-points to label border-
ing pixels of similar values. To set the seeds, simply click on the dark region of the
tooth (Figure 6.2). Set enough seed-points to include enough values in the range of

CHAPTER 6. EXAMPLE DATASET: TOOTH 17

Figure 6.1. Tooth volume after Median Filter.

Figure 6.2. Choosing the seed points.

18 Chapter 6

Figure 6.3. Darkest region labeled.

the target area. Scroll through multiple slices using the arrow keys while the cursor
hoovers over the view you want to change, and then set seeds on more than one slice.

This will probably require many seed-points and some experimenting. Keep run-
ning the filter and adding more seed-points as needed (the seed-points will be saved
until they are cleared) until the entire, darkest area is covered by the label (Figure
6.3). Delete all the extra labels that were generated while you practiced. Now you
have one of the regions finished. Rename this label to ’DarkRegion’.

For the second region, select ‘Threshold’ under the ‘Tools’ menu. This tool will
label all the pixels in the volume that have a value between the set thresholds. The
thresholds can be set by seed-points or using sliders to select values to label. Choose
threshold values that will label the entire tooth volume except the darkest regions
(Figure 6.4). Make sure that the area selected by the threshold-filter slightly over-
laps the label that you made for the darkest regions. Press the ’Run Filter’ button.
Rename the layer to ’Threshold’.

To get rid of the overlap, choose the ‘BooleanRemove’ tool from the ‘Mask Filters’
menu. Set the Target Layer to ’Threshold’ or to the layer you just made. Set Mask
Layer to ’DarkRegion’ or to the layer you made from the darkest region. Run this
filter by clicking ’Run Filter’.

(Figure 6.5). A new label should appear that does not overlap, called ’REMOVE
Threshold’, if you have renamed the labels as described above.

Open the ‘Threshold’ tool once again. Now set the threshold to select the highest
intensity region in the tooth. Make sure that it is as big a threshold as possible

CHAPTER 6. EXAMPLE DATASET: TOOTH 19

Figure 6.4. Selecting the tooth using the threshold tool.

Figure 6.5. Removing the overlapping regions using ’Boolean Remove’.

20 Chapter 6

Figure 6.6. Using the ’Paint Brush’ tool to modify the labels to map areas not
selected by the filter.

without getting stray pixels. The label for the whitest region is meant to extend to
the top of the tooth so that there is none of the previously made layers shows above
it. If this is not the case, then open the ’Paint Brush’ from the ’Tools’ menu and
set the bigger label as ’Mask Constraint 1’. It will probably be called ’REMOVE
Threshold’ under the ‘Edit’ menu. Now, simply paint the remaining pixels to extend
the white region (Figure 6.6). The mask will help make painting easier, but this still
has to be done slice by slice, so the painting can be skipped. Painting just makes the
mesh look nicer. Rename the layer to ’HighThresh’.

Once the label for the whitest region is fully selected, use the ‘BooleanRemove’
tool again. Select the Target Layer as ’REMOVE Threshold’ and the Mask Layer as
’High Threshold’. Also select the ’Replace’ box before clicking the ’Run Filter’ button.
Rename REMOVE Threshold to MiddleThresh. There should be three labels for
each of the obvious regions in the tooth (Figure 6.7). They should not overlap or
contain any gaps between them. If there are overlapping regions or gaps in the labels,
the mesh can still be run through BioMesh3D, but it won’t be as clean. Once the
three regions of the tooth are correctly labeled ‘Export Segmentation’ under the ‘File’
menu. Uncheck the group box and then select the three correct labels, HighThresh,
MiddleThresh, and DarkRegion. Then click ’Continue’. Give the output .nrrd a
name, such as ’tooth’, and verify that the labels are numbered as you would like and
then click ’Done’. This is the file that will be used in subsequent steps. Once the
segmentation is exported from Seg3D, it can run through BioMesh3D.

CHAPTER 6. EXAMPLE DATASET: TOOTH 21

Figure 6.7. Final three regions segmented, ready for export.

6.2 Running BioMesh3D

The actual running of BioMesh3D does not require much work on your part, just
start it and let the computer crunch through it. The model config.py setup file needs
to be edited to fit your machine and project. There are examples of this configuration
file in the directory bin/FEMesher.

It is suggested that a model config.py file be made for each dataset run in
BioMesh3D.

There are several variables in the model config.py that need to be set.
The variables are as follows:

• model input file: The path for the mesh that will be input into the pipeline; in
our case, the segmentation of the tooth (.../tooth.nrrd).

• model output path: The path for the output files that will be generated by
BioMesh3D (.../tooth).

• mats: The mask or data values of the materials in the input fields. In the case
of our tooth segmentation, there are four materials: the three different regions
that we segmented, and the air around it. These are all assigned a value by
Seg3D, beginning with 0. With the tooth file that we are using, we will assign
this variable (0,1,2,3).

22 Chapter 6

• mat names: The names of the materials labeled in the segmentation. Each
material labeled in the mats variable needs to have unique name. For simplicity,
we will assign the mat names variable (‘air’, ‘mat1’, ‘mat2’, ‘mat3’).

• mat radii: This variable is a parameter for the tightening that is performed in
the second stage to make the meshes smoother. To turn off tightening, such as
for very thin (one or two voxels thick) meshes, set this parameter to 0. For the
tooth file that we are using, we can leave the default value 0.8.

• refinement levels: This will modify the generation and refinement of the medial
axis points. A higher value will allow for more refinement, and thus medial axis
points will be closer together. This variable can be set higher if the segmentation
is very small or narrow.

• max sizing field: Modifies the sizing field algorithm. A lower number generates
more final elements on the tetrahedral mesh.

• SIZING SCALE VAR: A lower number generates more final elements on the
tetrahedral mesh.

• num particle iters: The number of iterations used in the particle system in
stage 6 of the pipeline. The particle system generates equally spaced points to
generate tetrahedra. For the tooth.nrrd file, set the variable to 500.

• tetgen joined vol flags: This variable is similar to the previous, except it applies
to the tetrahedral models generated for all the materials combined into a single
file. The flags available in this option are the same as the previous variable. It
can be left as “zpAAqa10”.

• max procs: Caps the number of processes used by the particle system (stage 6).

Once the model config.py file is set to your liking, you’re ready to run the script
to execute the pipeline. The command to run the script has three parts: the path to
the BuildMesh.py script and the path to the model config.py file.

Open a terminal window, and type the following as one command:

[...]bin/BuildMesh.py [flags] [...] /model config.py

To see the other flags available for BioMesh3D, please refer to Section 2.1.
The script may take a while to finish, depending on the system you are using and

the size of the dataset. The tooth file will probably take between twenty minutes and
an hour. If it takes longer, then it is likely that the script crashed and needs to be
restarted. Look for error messages as the script runs and check the parameters in the
model config.py file accordingly.

Once BioMesh3D confirms that it is complete, look in the junctions directory in the
defined output directory. There will be a file named particle-union.tets-labeled transformed.fld,

CHAPTER 6. EXAMPLE DATASET: TOOTH 23

Figure 6.8. The output of Stage 2. This is the isosurface of each of the material type.

which is a tetrahedral mesh labeled with the values given for each material in the
model config.py.

6.3 BioMesh3D Output
The following images are the output of each of the display stages (using the the -d
flag). To see these images, it is recommended that the entire script run to completion,
then re-execute the script with the -id flags. This will show the displays without re-
executing the script.

24 Chapter 6

Figure 6.9. The output of Stage 3. These points are the medial axis points. The
medial axis points are generated for each material, but only the first material is shown
by default.

Figure 6.10. The output of Stage 4. This shows the sizing field and the medial axis
points meshed together.

CHAPTER 6. EXAMPLE DATASET: TOOTH 25

Figure 6.11. The output of Stage 6. The particles shown are the points used to
generate the tetrahedral meshes.

Figure 6.12. The final mesh generated by BioMesh3D. The color map represents the
mesh quality of the tetrahedra. Red is high and blue is low.

26 Chapter 6

	Overview
	Meshing pipeline stages
	Introduction to Biomesh3D
	Pipeline Scripts

	User Variables: model_config.py
	Initializer: BuildMesh.py
	Stage 1: MakeSolo.py
	Stage 2: ComputeMaterialBoundary.py
	Stage 3: ComputeMaterialMedialAxis.py
	Stage 4: ComputeSizingField.py
	Stage 5: GenerateSeeds.py
	Stage 6: DistributeParticles.py
	Stage 7: BuildMaterialInterfaceMesh.py
	Stage 8: BuildVolumetricMesh.py

	Limitations and known issues
	Preparing data for meshing pipeline
	Segmentations with Seg3D

	Example dataset: Mickey
	Example Data Sets

	Example dataset: Tooth
	Creating a segmentation using Seg3D
	Running BioMesh3D
	BioMesh3D Output

