
Jess Tate jess@sci.utah.edu

UncertainSCI: a Tool for Uncertainty
Quantification in Brain Simulation

Jess D Tate, Zexin Liu, Jake A Bergquist, Sumientra
Rampersad, Dan White, Chantel Charlebois, Lindsay C
Rupp, Dana H Brooks, Akil Narayan, Rob S MacLeod

Scientific Computing and Imaging (SCI) Institute
University of Utah

Northeastern University

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Design Goals

Numerical accuracy
Adaptability to multiple problem types
Interfacing with diverse tools
Simple API

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Propagation of Uncertainty
Parameter/Input

Uncertainty

X3

X1

X2
F(X1,X2,X3)

?

Modeling Pipeline Uncertain Result

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UQ Pipeline

UncertainSCI

X3

X1

X2 F(X1,X2,X3)

W
ei

gh
te

d
Sa

m
pl

in
g

U
Q

 E
st

im
at

io
n

Parameter/Input
Uncertainty Modeling Pipeline

Uncertainty
Statistics

Mean
Median
Stand. Dev.
Quantiles
Sensitivities

Non-invasive

mailto:jess@sci.utah.edu

UncertainSCI and basic usage

amplitude frequency phase offset

amplitude frequency phase offset

amplitude frequency phase offset

Jess Tate jess@sci.utah.edu

Simple Example
dimension = 4
dist = BetaDistribution(alpha=1, beta=1, dim=dimension)
order = 5
index_set = TotalDegreeSet(dim=dimension, order=order)

xVals = np.linspace(-1*np.pi,1*np.pi,100)
bounds = [0.5, 1, 1, 1, 1, 1, -1, 1]
model = lambda p: modelFunction(p, x = xVals, paramBounds=bounds)

pce = PolynomialChaosExpansion(index_set, dist)
pce.build(model)

The parameter samples and model evaluations are accessible:
parameter_samples = pce.samples
model_evaluations = pce.model_output

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Simple Example
output statistics

mean = pce.mean()
stdev = pce.stdev()

variable_interactions = list(chain.from_iterable(combinations(range(dimension),
 r) for r in range(1, dimension+1)))

global_sensitivity = pce.global_sensitivity(variable_interactions)

https://github.com/SCIInstitute/UncertainSCI/blob/master/demos/basic_uq_example.py

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Architecture

Distributions

Classes

UQ Method

Classes

Utilities

Libraries

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Architecture

Distributions

Classes

UQ Method

Classes

Utilities

Libraries

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UQ Methods

Polynomial Chaos Expansion (PCE)
Monte Carlo
More to come

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

PC RecapPolynomial chaos (PC)
Let fpP q be a quantity of interest that depends on random parameters P

P P d
is a random variable with probability density w

f : d Ñ is the forward simulation

PC appraoches construct the emulator

fpP q « fN pP q :“
Nÿ

j“1

pfj�jpP q, r�jpP q�kpP qs “ �j,k

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONSTRUCTING LEAST-SQUARES POLYNOMIAL APPROXIMATIONS 491

λ(1)

λ
(2
)

ΛHC(20)

λ(1)

λ
(2
)

ΛTD(20)

λ(1)

λ
(2
)

ΛED(20)

λ(1)

λ
(2
)

ΛTP(20)

Fig. 2 Visual depiction of two-dimensional multi-index sets. Left-to-right: The hyperbolic cross
(HC), total degree (TD), Euclidean degree (ED), and tensor product (TP) spaces of or-
der/degree k = 20. Each multi-index set � uniquely identifies a polynomial space V (�) via
the relation (4.1).

performing discretizations in high-dimensional cases is quite di�cult, for example,
because there is no simple analogue of a multivariate “Gaussian” quadrature rule and
many straightforward attempts at identifying highly accurate quadrature rules result
in computationally infeasible constructions. A tensor-product construction illustrates
the di�culty: if one forms a quadrature grid using m points per dimension, then in d
dimensions this results in M = md points. For moderate values of m and, say, d � 5,
the resulting computational cost (i.e., the number of times f must be evaluated) is
too onerous for practical implementation.

The alternative popular strategy that we investigate in this paper is that of (ran-
domized) discrete least squares. One reason for the popularity of this approach is that
it is particularly simple to explain and implement. A discrete least-squares approx-
imation computes the minimizer gN of a discrete estimator of the norm �f � gN�.
A randomized version of this strategy chooses the discrete estimator for the norm
by randomly sampling points in D. We will see that by intelligently specifying a
sampling distribution for the random draw of samples, we can compute near-optimal
approximations gN with acceptable computational e�ort.

Suppose that x1, . . . , xM are M sample points in D. We will build an approxi-
mation gN � V to f by minimizing the discrete �2 discrepancy between gN and f on
these points, i.e., we define gN via the optimization

gN := argmin
g�V

1

M

M�

m=1

(g(xm) � f(xm))2 .(5.1)

In this formulation, the only information about f we require is the ensemble of data
{f(xm)}M

m=1. The di�erence between gN defined in this way, and fN defined in (2.2),
is in the objective function under the argmin. With fN , the objective function is an
L2

w norm, i.e., an integral, whereas for gN it is a discretization of this integral. To
formulate the above as an algorithm, we rewrite it as a linear algebra problem. First
we note that gN � V has the form (3.3) for some coe�cients cn; we next prescribe
conditions that the vector c = (c1, . . . , cN)T satisfies. Define an M �N matrix A and
a vector f � M with entries

(A)m,n =
1�
M

vn(xm), (f)m =
1�
M

f(xm).(5.2)

The vector c containing expansion coe�cients for gN is defined in (5.1), which is

D
ow

nl
oa

de
d

08
/1

4/
20

 to
 2

4.
10

.2
37

.6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The pfj are typically computed by collecting an ensemble of forward model samples:

Compute pfj such that fppmq « fN ppmq for m “ 1, . . . ,M

The complexity of this approach is dominated by collection of tfppmquM
m“1.

A. Narayan, Z. Liu,, S. Rampersad, J. Tate (U. Utah – SCI) UncertainSCI: efficient forward UQ

Polynomial chaos (PC)
Let fpP q be a quantity of interest that depends on random parameters P

P P d
is a random variable with probability density w

f : d Ñ is the forward simulation

PC appraoches construct the emulator

fpP q « fN pP q :“
Nÿ

j“1

pfj�jpP q, r�jpP q�kpP qs “ �j,k

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CONSTRUCTING LEAST-SQUARES POLYNOMIAL APPROXIMATIONS 491

λ(1)

λ
(2
)

ΛHC(20)

λ(1)

λ
(2
)

ΛTD(20)

λ(1)

λ
(2
)

ΛED(20)

λ(1)

λ
(2
)

ΛTP(20)

Fig. 2 Visual depiction of two-dimensional multi-index sets. Left-to-right: The hyperbolic cross
(HC), total degree (TD), Euclidean degree (ED), and tensor product (TP) spaces of or-
der/degree k = 20. Each multi-index set � uniquely identifies a polynomial space V (�) via
the relation (4.1).

performing discretizations in high-dimensional cases is quite di�cult, for example,
because there is no simple analogue of a multivariate “Gaussian” quadrature rule and
many straightforward attempts at identifying highly accurate quadrature rules result
in computationally infeasible constructions. A tensor-product construction illustrates
the di�culty: if one forms a quadrature grid using m points per dimension, then in d
dimensions this results in M = md points. For moderate values of m and, say, d � 5,
the resulting computational cost (i.e., the number of times f must be evaluated) is
too onerous for practical implementation.

The alternative popular strategy that we investigate in this paper is that of (ran-
domized) discrete least squares. One reason for the popularity of this approach is that
it is particularly simple to explain and implement. A discrete least-squares approx-
imation computes the minimizer gN of a discrete estimator of the norm �f � gN�.
A randomized version of this strategy chooses the discrete estimator for the norm
by randomly sampling points in D. We will see that by intelligently specifying a
sampling distribution for the random draw of samples, we can compute near-optimal
approximations gN with acceptable computational e�ort.

Suppose that x1, . . . , xM are M sample points in D. We will build an approxi-
mation gN � V to f by minimizing the discrete �2 discrepancy between gN and f on
these points, i.e., we define gN via the optimization

gN := argmin
g�V

1

M

M�

m=1

(g(xm) � f(xm))2 .(5.1)

In this formulation, the only information about f we require is the ensemble of data
{f(xm)}M

m=1. The di�erence between gN defined in this way, and fN defined in (2.2),
is in the objective function under the argmin. With fN , the objective function is an
L2

w norm, i.e., an integral, whereas for gN it is a discretization of this integral. To
formulate the above as an algorithm, we rewrite it as a linear algebra problem. First
we note that gN � V has the form (3.3) for some coe�cients cn; we next prescribe
conditions that the vector c = (c1, . . . , cN)T satisfies. Define an M �N matrix A and
a vector f � M with entries

(A)m,n =
1�
M

vn(xm), (f)m =
1�
M

f(xm).(5.2)

The vector c containing expansion coe�cients for gN is defined in (5.1), which is

D
ow

nl
oa

de
d

08
/1

4/
20

 to
 2

4.
10

.2
37

.6
. R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

The pfj are typically computed by collecting an ensemble of forward model samples:

Compute pfj such that fppmq « fN ppmq for m “ 1, . . . ,M

The complexity of this approach is dominated by collection of tfppmquM
m“1.

A. Narayan, Z. Liu,, S. Rampersad, J. Tate (U. Utah – SCI) UncertainSCI: efficient forward UQ

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

PCE Class
Functions:

• set_distribution

• generate_samples (WAFP)

• build

• Stats:

• Mean, Median, Stdev, Quantiles, Sensitivities

• adapt_expressivity

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

pce.build

lambda function
pce.build(model)

Model Solutions only
pce.build(model_output=model_output)

saved samples and solutions
pce.build(model_output=model_output, samples = samples)

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

PCE Class
Functions:

• set_distribution

• generate_samples (WAFP)

• build

• Stats:

• Mean, Median, Stdev, Quantiles, Sensitivities

• adapt_expressivity

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Output Statistics

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Output Statistics
mean = pce.mean()
stdev = pce.stdev()

variable_interactions = list(chain.from_iterable(combinations(range(dimension),
 r) for r in range(1, dimension+1)))

global_sensitivity = pce.global_sensitivity(variable_interactions)

total_sensitivity = pce.total_sensitivity()

dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = pce.quantile(0.5, M=int(1e3))[0, :]

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Global Sensitivities

2 Parameters 4 Parameters

Includes interactions
Sums to 1
Fraction of variance

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Total Sensitivities

For each input
May not sum to 1
Indirectly related to
variance

1+2 Interaction

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Architecture

Distributions

Classes

UQ Method

Classes

Utilities

Libraries

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Multivariate Distributions

Gaussian
Exponential
Beta
Uniform
Discreet Uniform
Tensorial

Images from wikipedia.com

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Multivariate Distributions

Distribution Class

• Constructor

• (mean, std, domain, cov, etc.)

• MC_samples

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Distribution Examples

dist = NormalDistribution(mean=mean, cov=cov, dim=dimension)

dist = BetaDistribution(alpha=alpha, beta=beta, dim=dimension)

dist = ExponentialDistribution(lbd=lbd, loc=loc)

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UQ Pipeline

UncertainSCI

X3

X1

X2 F(X1,X2,X3)W
AF

P

PC
E

Parameter/Input
Uncertainty Modeling Pipeline

Uncertainty
Statistics

Mean
Median
Stand. Dev.
Quantiles
Sensitivities

Other software ?

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI with Matlab

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Starting Matlab in Python

import matlab.engine

if len(matlab.engine.find_matlab()) < 1:
 eng = matlab.engine.start_matlab('-desktop')
 print('Starting new matlab')
else:
 eng = matlab.engine.connect_matlab()
 print('Connected to existing matlab')
print('Matlab Started')

https://www.mathworks.com/help/matlab/matlab-engine-for-python.html?s_tid=CRUX_lftnav

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Define Model

def ForwardModel(p = [0.5, 0.5, 0.5]):
 eng.workspace['param'] = p

 # RunFWDForUQ is a matlab function
 result = np.double(eng.eval(‘RunFWDForUQ(param)’))

 #Set the centroid translation
 return result.reshape((result.size,))

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Run UncertainSCI
set up UncertainSCI
dimension = 3
alpha = 1.
beta = 1.
dist = BetaDistribution(alpha, beta, dimension)
order = 5
indices = TotalDegreeSet(dim=dimension, order=order)
pce = PolynomialChaosExpansion(indices, dist)

Define model
model = lambda p: ForwardModel(p)
Compute PCE (runs model)
lsq_residuals = pce.build_pce_wafp(model)

move UQ results to matlab
eng.workspace['meanSig'] = pce.mean().tolist()
eng.workspace['std'] = pce.stdev().tolist()
eng.workspace['quantile_5'] = pce.quantile(.5).tolist()
eng.workspace['quantile_25'] = pce.quantile(.25).tolist()
eng.workspace['quantile_75'] = pce.quantile(.75).tolist()

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Running Uncertainty with Another Software

SCIRun, CARP, ECGSim, Slicer, etc

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Generate and Save Samples

Setup and parameter samples

domain = np.array([[-125, 125], [-85, 85], [-60, 60], [-40, 40]]).T
sample_params = { "dimension": 4, "alpha": 1, "beta": 1, "domain": domain}

pce = set_distribution(sample_params)

pce.generate_samples()
scipy.io.savemat(Filename, dict(samples=pce.samples))

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Run Model Through Python or Externally

def external_model(sample_file):

 Run_other_software(sample_file)

 return solution_file

Or run asynchronously

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Run PCE with Solutions and Samples

load model solutions
tmp = scipy.io.loadmat(solution_file[:-4]+".mat")
model_output = tmp["model_solutions"]

load Samples saved from UncertainSCI
tmp_samp = scipy.io.loadmat(samples_file)
samples = tmp_samp['samples']

pce.build(model_output=model_output, samples = samples)

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Compute Statistics
output statistics
mean = pce.mean()
stdev = pce.stdev()

variable_interactions = list(chain.from_iterable(combinations(
 range(sample_params['dimension']), r)
 for r in range(1, sample_params['dimension']+1)))
global_sensitivity = pce.global_sensitivity(variable_interactions)
total_sensitivity = pce.total_sensitivity()

dq = 0.5/(Q+1)
q_lower = np.arange(dq, 0.5-1e-7, dq)[::-1]
q_upper = np.arange(0.5 + dq, 1.0-1e-7, dq)
quantile_levels = np.append(np.concatenate((q_lower, q_upper)), 0.5)

quantiles = pce.quantile(quantile_levels, M=int(2e3))
median = pce.quantile(0.5, M=int(1e3))[0, :]

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Pipeline

UncertainSCI

X3

X1

X2 F(X1,X2,X3)W
AF

P

PC
E

Parameter/Input
Uncertainty Modeling Pipeline

Uncertainty
Statistics

Mean
Median
Stand. Dev.
Quantiles
Sensitivities

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

UncertainSCI Design Goals

Numerical accuracy
Adaptability to multiple problem types
Interfacing with diverse tools
Simple API

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Acknowledgements

Support
Center for Integrative Biomedical Computing:
NIGMS P41 GM103545, NIGMS R24 GM136986
UncertainSCI: NIBIB U24EB029012

People
Jess D Tate
Zexin Liu
Jake A Bergquist
Sumientra Rampersad
Dan White

Chantel Charlebois
Lindsay C Rupp
Dana H Brooks
Akil Narayan
Rob S MacLeod

mailto:jess@sci.utah.edu

Jess Tate jess@sci.utah.edu

Get UncertainSCI Today

https://sci.utah.edu/sci-software/simulation/uncertainsci.html
https://github.com/SCIInstitute/UncertainSCI

mailto:jess@sci.utah.edu

	UnceratianSCI_FIMH
	UncertainSCI and basic usage

