

Predictability-Based Adaptive Mouse Interaction for Visual Flow Exploration

<u>Marcel Hlawatsch</u>, Filip Sadlo, and Daniel Weiskopf Visualization Research Center, University of Stuttgart, Germany

Intro

- Interactive flow visualization
- Analysis of transport

- Uncertainty and Predictability
- Related Work
- Input Uncertainty Mouse Input Adaptation
- Output Uncertainty Zoom Lens
- Summary & Future Work

Uncertainty and Interactive Visualization

Predictability and FTLE

- Transport processes in flow field
- Interactive seeding
- Perturbation through input uncertainty
- Growth of perturbation represents predictability problem
 ⇒ Finite-time Lyapunov exponent (FTLE)

Related Work

- Mouse acceleration
 - User interface level not data-driven
- Delocalized criteria
- FTLE for seeding

[Fuchs et al., 2008]

[Bürger et al., 2008]

Mouse Input Adaptation

- Data-driven adaptation with FTLE
- Adapted mouse coordinates (high precision – sub pixel)
- Activate on demand (e.g., right mouse button)
- High predictability fast motion
- Low predictability slow motion

Mouse Input Adaptation – FTLE

- Basic approach: isotropic adaptation
- Scale motion vector with $1/(1 + k\sigma)$
- k scaling factor
- *σ* FTLE

Direct input

FTLE-based Adaptation

Mouse Input Adaptation – FTLE Gradient

- Extended adaptation (anisotropic)
- Using FTLE gradient:
 - 1. Input motion vector
 - 2. Decomposition w.r.t. gradient
 - 3. Scaling of parallel component by user-defined factor p
 - 4. Composition

Mouse Input Adaptation – Direction

Input vector

Mouse Input Adaptation – Direction

Input vector

Mouse Input Adaptation – Direction

Input vector

Mouse Input Adaptation – Sampling

- Fast input motion
 ⇒ risk of missing features
- Supersampling of motion path
 - Iterative application of adaptation method

Results – Quad Gyre

Forward FTLE field

Direct input

Adaptive input

0.0

1.0

Results – Buoyant Flow: Temperature

Backward path lines – heat transport

Results – Kármán Vortex Street

- Backward path lines
- Transport of vorticity from boundary shear flow

Output Adaptation – Zoom Lens

- Uncertainty of display output
 ⇒ provide sufficient resolution
- Lens maintains context
- FTLE for adaptive zooming
- Interaction mouse adaptation
- Zoomed output by scaling or on-the-fly computation

On-the-fly

Zoom Lens – Buoyant Flow

 Delocalized temperature: Temperature averaged along path line

Direct mouse motion

Adapted mouse motion

- Mouse input: Input
 - Input uncertainty reduced
 - No switching between interaction styles
 - Zoom lens: Output uncertainty reduced
 - Context preserved
 - No switching between zoom levels
- Data-driven adaptation
- Risk of missing important features lowered
- Overall exploration more efficient

Future work

- Use of other input devices, e.g., Phantom
 - Haptic feedback
 - 3D input
- User study
 - Confirm usefulness
 - Compare adaptation schemes
- 3D flow

Thank you. Questions?

