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Abstract— Methods that faithfully and robustly capture the geometry of complex material interfaces in labeled volume data are im-
portant for generating realistic and accurate visualizations and simulations of real-world objects. The generation of such multimaterial
models from measured data poses two unique challenges: first, the surfaces must be well-sampled with regular, efficient tessella-
tions that are consistent across material boundaries; and second, the resulting meshes must respect the nonmanifold geometry of
the multimaterial interfaces. This paper proposes a strategy for sampling and meshing multimaterial volumes using dynamic particle
systems, including a novel, differentiable representation of the material junctions that allows the particle system to explicitly sam-
ple corners, edges, and surfaces of material intersections. The distributions of particles are controlled by fundamental sampling
constraints, allowing Delaunay-based meshing algorithms to reliably extract watertight meshes of consistently high-quality.

Index Terms—Sampling, meshing, visualizations.

1 INTRODUCTION

Three dimensional images (volumes) provide an important source of
information for generating realistic computer models of real-world ob-
jects. For example, biological and geophysical data is often captured
using volumetric scanning methods such as magnetic resonance imag-
ing (MRI) or ultrasound. The data from these devices is usually stored
as a regular grid of values that provide information about the surface
of the scanned object and its detailed internal structure. Most objects,
natural or man-made, contain multiple materials with vastly different
physical properties that are typically organized in complicated geo-
metric configurations. Extracting precise geometric models of the in-
terfaces between these materials is important both for visualization and
for realistic physically-based simulations in a variety of fields, from
biomedical computing and computer animation to oil-and-gas explo-
ration and engineering.

Multimaterial volumes impose particular challenges for sampling
and meshing algorithms because the boundaries between materials are
typically not smooth manifolds. As a result, intersections of materi-
als can produce sharp features such as edges and corners (see Sec-
tion 3). Furthermore, the development of increasingly realistic sim-
ulations dictates additional constraints, such as a sufficient number
of samples for accurately representing the geometry, compact sets of
nearly-regular triangles, and consistent tessellations across material
boundaries. The construction of geometric models that meet these re-
quirements for surfaces of distinct objects is well-studied. However,
generating high-quality models of objects that contain multiple mate-
rials has thus far received little attention.

This paper proposes the use of a dynamic particle system to produce
well-spaced distributions of points on material interfaces in multima-
terial volumes. The particles move to minimize an objective func-
tion that is designed to produce configurations of samples that are
locally adaptive, geometrically accurate, and well-suited for subse-
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quent meshing. The set of material boundaries are described as a CW-
complex [26], and we present new, analytic representations for the dif-
ferent kinds of cells that form this structure. We also define projection
operators that allow the particles to sample these material boundaries
in a hierarchical fashion — 0-cells, 1-cells, and then 2-cells. The re-
sult is a set of surface points that adapt to the underlying geometry and
meet fundamental surface sampling requirements. From these surface
points, Delaunay-based meshing schemes create high-quality surface
meshes that are well-suited to the generation of well-shaped volumet-
ric elements [3].

The main contribution of the paper is a novel scheme for represent-
ing the nonmanifold sets formed at the material interfaces in multima-
terial volume data, and a corresponding set of projection operators that
allow these interfaces to be sampled with dynamic particle systems.
Also presented is an algorithm for distributing sets of particle systems
such that each type of interface is sampled explicitly. The resulting
sets of points generate surface meshes that are well-defined subsets
of a Delaunay tetrahedralization, the extraction of which is reliably
produced through a simple labeling algorithm. This scheme gener-
ates high-quality meshes directly from the multimaterial representa-
tion, and thus part of the pipeline is a volume processing methodology
that allows for controlled smoothing of the data for a specific down-
stream application prior to sampling and meshing (see Section 5.1) —
this is a significant difference from existing grid-based methods (see
Section 2.1). We provide implementation details of the proposed al-
gorithm, and demonstrate its effectiveness for several multimaterial
volumes generated from MRI scans of real-world objects, such as the
torso in Figure 1.

2 PREVIOUS WORK

2.1 Meshing Multimaterial Volumes

Most of the previous work on meshing multiple material data focuses
on grid-based tessellation algorithms. These algorithms work on the
original, labeled volumes (i.e., a regular grid that stores an integer at
each node that indicates a specific material, most often the result of
a segmentation of an MRI or CT scan), and focus on extensions of
the marching cubes case tables [27] to handle the nonmanifold surface
intersections. A postprocessing step is often applied to the mesh to re-
duce the voxelization artifacts, as well as to reduce the overall number
of triangles.

Some of the earliest work presents methods that generate nonman-
ifold meshes from tetrahedral elements that are created from the orig-
inal rectilinear volume [8, 33, 11], including the recent method of
Dillard et al. [18] for creating boundary meshes of polycrystal data.
Surface extractions from tetrahedral elements, however, result in an
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Fig. 1. Multimaterial surfaces of a torso extracted from an MRI scan, with closeups of meshes generated using dynamic particle systems.

excessive number of triangles. Methods based on extracting inter-
faces in hexahedral cells can reduce the overall number of triangles,
but they must handle an increased number of nonmanifold ambigui-
ties [22, 47, 39, 6, 7].

While these grid-based approaches are generally robust and effi-
cient, the first-order approximation of the material boundaries can con-
struct incorrect topology [34]. More importantly, the resolution of the
underlying grid, and not the geometry of the surface, dictates the re-
sulting mesh resolution, while the triangles are usually poorly shaped
(i.e., not-regular) because the methods do not focus on the placement
of the vertices. Even with smoothing and decimation, the quality
is limited (see Section 6). Recently, Zhang et al. [48] proposed an
octree-based approach that relies on the dual contouring method [23]
to produce adaptive tetrahedral elements as well as to preserve sharp
features. Like the other grid-based methods, however, this approach
does not optimize the mesh resolution to reflect the underlying surface
geometry.

Another avenue of surface meshing research focuses exclusively
on the boundary of objects and the generation of well-shaped tri-
angles. Methods such as advancing front [24, 40] or particle-based
schemes [16, 31] place samples along an implicit surface such that
nearly-regular triangles are generated that adapt to the underlying
geometry. A different approach is that taken by Delaunay-based
methods [5, 17], which provide algorithms for constructing provably-
correct triangulations of a given set of surface samples. These algo-
rithms rely on the seminal work of Amenta et al. [4] that proves a
sampling constraint based on the local feature size (LFS) such that the
correct topology of a surface can be inferred from an unorganized set
of sample points. These methods do not, however, address the chal-
lenges of meshing multimaterial surfaces or handling surfaces with
sharp features.

Recently, Pons et al. [38] apply a Delaunay-refinement algo-
rithm [9] to multimaterial volumes. The algorithm described in their
paper builds on the work of Oudot et al. [36] that requires C2 sur-
faces for termination guarantees, which is not the case for multima-
terial datasets as discussed in the next section. Some recent work on
the description of the LFS [10, 12] and the Delaunay-refinement al-
gorithm [14] may, however, provide some theoretical foundations that
extend to multimaterial datasets.

2.2 Dynamic Particle Systems

Dynamic particle systems, first introduced to the computer graphics
community by Witkin and Heckbert [46], are a mechanism for produc-
ing even distributions of samples across implicitly-defined surfaces.
Surface samples (called particles) are constrained to the zero-set of an
implicit function, but are allowed to move along the surface (i.e., in
the local tangent plane) to obtain minimal energy configurations. In
this work, we use a modified version of the particle system proposed
by Meyer et al. [30] that locally adapts the distance between particles
to create higher densities of points around surface features.

2.3 Multimaterial Representations

Work on level sets and CSG has addressed the problem of representing
multimaterial data analytically. Level set methods [41, 35], although
often used for capturing and deforming a single interface, have been
extended for tracking the motion of multimaterial datasets [28, 49],
while implicit representations of multimaterials have also been devel-
oped for handling CSG operations [37]. These algorithms describe the
multimaterial datasets using a functional model of the materials. In
this paper we extend the model so that a dynamic particle system can
explicitly capture different types of multimaterial junctions to produce
high-quality triangle meshes.

3 TOPOLOGY OF MULTIMATERIAL INTERFACES

We represent interfaces in a multimaterial dataset using a model that
describes each material with a smooth, volumetric indicator function,
fi [28, 37]. A set of N indicator functions F = { fi| fi : V �→ℜ} repre-
sents n materials. A material label i is assigned to a point x ∈V if (and
only if) fi(x) > f j(x) ∀ j �= i.

Looking at the simple case when only two materials exist in the
dataset, for all points x where f1(x)− f2(x) > 0 the model will assign
a label of 1, while assigning a label of 2 otherwise — we note that
this description corresponds to the conventional formulation of an im-
plicit surface. In the multimaterial model, the set of points x, where
f1(x)− f2(x) = 0, forms the interface, or junction, between these two
materials.

In the case of an arbitrary number of materials in the dataset, the
configurations of interfaces become somewhat more complex. The
boundaries that separate materials are no longer manifold, and can
form sharp corners and edges. The topology of these junctions, how-
ever, can be characterized by certain generic configurations (see Fig-
ure 2). The term generic, from the field of singularity theory, refers

(a) (b) (c) (d)

Fig. 2. In 2D, a 3-material junction is generic and forms a 0-cell (a); it
maintains its topology under small perturbations (b). A 4-material junc-
tion (c), however, is a nongeneric case, and is annihilated under small
perturbations (d) to form generic 2- and 3- material junctions.

to the cases where the set of functions F are in general position. This
situation is analogous to the finite-dimensional spaces considered in
discrete geometry — i.e., three points in general position cannot lie on
a line, and if they do, a general position can be restored through very
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small perturbations. In this work we typically consider only generic
configurations, which is justified by our reliance on measured data
that inherently contains some level of noise, as well as our use of a
data processing pipeline that ensures a degree of smoothness in the
indicator functions (see Section 5.1).

We characterize each material interface in terms of the number of
material indicator functions that are maximal (and equal) at that junc-
tion. For V ⊂ ℜ2, 2-junctions and 3-junctions occur generically, as
shown in Figure 2 (a-b) as lines and points, respectively, while a 4-

junction is a nongeneric case, as shown in Figure 2 (c-d). For V ⊂ℜd

each K-junction forms a subset of V that is topologically equivalent
(homeomorphic) to a P-disk, where P = d−K + 1. Thus each type
of material junction can be considered a P-cell, as described in the lit-
erature on discrete topology [21, 2]. Generically, for d = 3 we have
4-junctions, which are 0-cells or points; 3-junctions, which are 1-cells
or curves; and 2-junctions, which are 2-cells or surfaces.

The collection of cells that describe the different types of material
junctions, taken together, form a CW-complex. That is, we can orga-
nize them hierarchically, such that each 2-cell is attached to a collec-
tion of 1-cells (at its border), and each one cell is attached to one or
more 0-cells. The strategy in this paper is to sample nonmanifold mul-
timaterial boundaries using this hierarchy of manifolds, and to form
the appropriate relationships between samples at each level in the hi-
erarchy.

4 REPRESENTING AND SAMPLING JUNCTIONS

Given a set of material indicator functions F , a set of analytical cell in-
dicator functions, J, approximate the cells formed by each type of ma-
terial junction (Section 4.1). In the proposed particle system sampling
scheme, each particle will be constrained to a particular material junc-
tion. This formulation for each type of cell includes a set of projection
operators to enforce this constraint (Section 4.2). A hierarchy of par-
ticle systems then samples each type of generically occurring material
junction such that each junction is represented in the final mesh. That
is, in 3D the 0-cells (points) are sampled first, followed by the 1-cells
(curves), and concluding with the 2-cells (surfaces). Finally, a sim-
ple labeling algorithm extracts the multimaterial surface meshes as a
subset of a Delaunay tetrahedralization of the samples (Section 4.3).

4.1 Differentiable Multimaterial Junctions

The proposed method analytically represents the individual material
junctions present in the volumetric model of multimaterial datasets
to allow sets of particles to specifically sample each junction. To do
this, a definition of an inside/outside (IO) function for each material
is defined using the volumetric model described in Section 3. These
functions are:

f̃i = fi−
n

max
j=1, j �=i

f j, (1)

where positive values indicate the presence of material i and negative
values indicate some other material. These functions have the prop-
erty that the zero-set of any one IO function coincides with the ma-
terial transitions between i and some other material. This means, for
instance, that for two adjacent materials, i and j, we have f̃i = f̃ j = 0
along the 2-junction where these two materials meet.

This coincidence of zero-sets for adjacent materials in Equation 1
allows for a novel representation that approximates the different kinds
of material junctions (cells) within a multimaterial volume. These
junctions are detected by a cell indicator function that identifies points
in V where a set of IO functions evaluate to zero, such as the mate-
rial interface between materials 1 and 2 shown as the red dashed line
in Figure 3. Along this curve, f̃1 = f̃2 = 0 and f̃3 < 0, while in the
vicinity of this curve f̃1 and f̃2 will be nonzero (one negative and the
other positive). Thus, in 3D, the set of 2-cells that form the interface
between two materials i and j, where i �= j, can be represented as the
zero-set of the continuous cell indicator function:

Ji j = f̃ 2
i + f̃ 2

j . (2)

1
f

2
f

3
f

p

Fig. 3. Material interfaces in multimaterial datasets exist where a volu-
metric model of the data transitions from one maximal material to an-
other, shown by the dotted lines for a set of three indicator functions.

In this scheme, the 1-cells for the set of materials i, j,k (assumed dis-
tinct) are given by the set of points Ji jk = 0 where:

Ji jk = f̃ 2
i + f̃ 2

j + f̃ 2
k , (3)

and likewise, the indicator for a 0-cell is:

Ji jkl = f̃ 2
i + f̃ 2

j + f̃ 2
k + f̃ 2

l . (4)

4.2 Sampling Multimaterial Junctions with Particles

To distribute a set of dynamic particles across a manifold we need to
define two things: first, how particles will be projected onto the man-
ifold; and second, how particles will be constrained to move along
the manifold. The first case is usually done using a gradient descent
method such as Newton-Raphson, while the latter case is most of-
ten accomplished by projecting motion vectors onto the local tangent
space of the manifold. For distributing particles across multimaterial
intersections, both of these tasks require first derivative information of
the cell indicator functions.

The gradient of Equation 2 (with analogous definitions for Equa-
tions 3 and 4) is:

∇Ji j = 2 f̃i∇ f̃i +2 f̃ j∇ f̃ j. (5)

The max function is only C0, however, and the derivative is not defined
at the transition between materials. Thus, we approximate max with
a smooth function that is differentiable, interpolates the max(i, j) at
i = j, and can be tuned (via a parameter) to be arbitrarily close to
max. The approximation used for the results in this paper is discussed
further in the Appendix. Using this approximation, it can be shown
through a Taylor series expansion around points on material junctions
that zero-set surfaces exist for the cell indicator functions to within
machine precision.

Notice that the cell indicator functions have the property that they
are zero on the set of interest (i.e., a material junction) and positive
everywhere else. Because the set of interest is locally minimal, the
gradient is zero on the material junctions, and thus these cell indi-
cators, unlike the IO functions, do not directly provide the tangent
spaces that are needed to constrain the motion of interacting particles.
The cell indicators are constructed, however, from combinations of
implicit functions for the individual materials (i.e., the IO functions),
and the gradients of these IO functions give the local orientation of
the cells. Thus we can use a series of projection operators that rely on
gradients of the IO functions to reconstruct the tangent spaces (planes
or lines in 3D) of the corresponding cells.

For 2-cells, the gradients of the IO functions that characterize the
junction will be approximately equal and opposite near the zero set,
thus we project a motion vector of a particle, v, onto a tangent plane
that is defined by the average (for numerical robustness) of these IO
function gradients:

nt =
∇ f̃i−∇ f̃ j

|∇ f̃i−∇ f̃ j|
(6)

and update the motion vector as:

v← v−< v,nt > nt = (I−nt ⊗nt)v. (7)
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On the 1-cells, particles must move along the tangent line of the zero-
set of Ji jk. A tangent line is computed as the summation of the cross
products of each pair of the three characterizing IO function normals,
which all have zero-crossings along that set:

ti jk =
∇ f̃i

|∇ f̃i|
×

∇ f̃ j

|∇ f̃ j|
+

∇ f̃ j

|∇ f̃ j|
×

∇ f̃k

|∇ f̃k|
+

∇ f̃k

|∇ f̃k|
×

∇ f̃i

|∇ f̃i|
. (8)

The particle motion vectors are then projected onto this normalized
tangent line, constraining the motions to the 1-cell:

v←

〈
ti jk

|ti jk|
,v

〉
ti jk

|ti jk|
. (9)

The 0-cells, which are the first to be sampled, are isolated points, each
sampled by a single particle (see Section 5.2), thus, we do not need to
define a projection operator.

4.3 Meshing Multimaterial Samples

Fundamental work in inferring correct topology from a set of unorga-
nized surface points relies on a sampling criterion that links the density
of points to the LFS of the surface [4]. In order to guarantee topolog-
ically and geometrically correct surface reconstructions, surface sam-
pling algorithms based on the LFS require an infinite sampling density
(in the limit) near sharp features, such as those formed by at the 0-cells
in a multimaterial dataset. Recent theoretical work [10, 12, 14], how-
ever, indicates that carefully designed meshing algorithms can han-
dle sharp features and discontinuous surfaces. Furthermore, it can be
shown in 2D that the LFS sampling constraint can be lifted around
sharp features if sample points are placed explicitly on cells, allowing
for the reconstruction of geometrically and topologically correct tes-
sellations of surfaces with sharp features using Delaunay-based mesh-
ing schemes. The proof [29] guarantees this claim in 2D for a lower
bound of 45◦ on the material angles formed by the tangent lines of the
1-cells at the 0-cell where they meet. Results from the level set litera-
ture indicate that angles between 1-cells, defined by smooth indicators
functions, are 120◦ at the 0-cells [49], making the 45◦ lower bound
a reasonable constraint for this work. We anticipate a similar result,
with a larger angle constraint, in 3D.

Based on this proof, we know that there exists a Delaunay-based
method that can reconstruct topologically correct manifold surfaces of
individual materials in multimaterial datasets from the set of particles.
These datasets contain additional information, though — namely, a
material label for almost every point in V — that allows for a simple
labeling algorithm to reliably extract the manifold material surfaces,
as well as the nonmanifold intersection surface [38]. The labeling al-
gorithm first computes a Delaunay tetrahedralization of the the sets of
points sampling the 0-, 1-, and 2-cells. Next, each tetrahedron is as-
signed a material label by determining the material type at the location
of its circumsphere center. Finally, the algorithm generates a surface
mesh by extracting all faces bounded by tetrahedra with different ma-
terial labels.

5 IMPLEMENTATION

5.1 Preprocessing Data

Representing multimaterial interfaces begins with the generation of
the indicator functions fi that characterize each material in the volume.
We do this by first isolating each material label into a separate vol-
ume, smoothing each volume to control the feature size, and then con-
structing smooth implicit representations of the smoothed volumes.
As the labeled data is smoothed as a preprocessing step, the proposed
method allows a domain expert to control the amount of data process-
ing and smoothing such that the resulting meshes capture the appro-
priate amount of geometry for a specific application. This allowance
is a significant difference from the data smoothing that occurs in grid-
based approaches, which smooth voxelization artifacts present in the
multimaterial mesh as a postprocessing step with a limited amount of
user control.

(a) (b) (c)

Fig. 4. When materials have thin regions, tightening can remove a large
amount of material to obtain the required minimum radius of curvature.
In (a), an isosurface of a labeled, single material volume is shown for a
thin region of the material. After tightening with r = 1 (b), a large portion
of a thin wall is eroded. In these situations it can be useful to tighten
the material at a higher resolution (c) with a smaller tightening radius
(r = 0.6 in this image). These meshes were extracted using marching

cubes [27] and Catmull-Rom spline reconstruction kernels.

The preprocessing begins by generating a binary volume for each
material, which can be down-sampled to meet the resolution con-
straints of the final simulation, as well as coarsely smoothed using
binary morphology operations [20]. We note that the volume repre-
sentation used through this work is a regular grid. Next, the volumes
are antialiased [44] to produce gray scale images. Each antialiased
material volume is then smoothed using a grayscale morphology al-
gorithm proposed by Williams and Rossignac [45] called tightening,
which limits the radius of curvature of the resulting boundary using
constrained, level set curvature flow. The algorithm takes as input an
antialiased volume representing a single, labeled material, along with
a user-defined tightening radius r that specifies the desired minimum
radius of curvature for the final, tightened surface. The output of the
algorithm is a grayscale volume that stores the signed distance to a
tightened material surface, where positive values indicate material.

In the process of tightening a surface to ensure a specific minimum
radius of curvature, thin regions of the surface can be altered drasti-
cally by the algorithm. An example of this is shown in Figure 4, where
a thin wall of material is noticeably eroded during tightening. To rem-
edy this undesirable effect, a smaller tightening radius can be used, at
the cost of less smoothing of the overall surface. However, due to the
numerics of the level set framework in which the tightening algorithm
is implemented, subvoxel tightening is not possible. Instead, the mate-
rial volume can be upsampled to a higher resolution grid, over which
a smaller tightening radius can then be applied. For the torso results
shown in Figure 1, the heart material resides over a higher resolution
grid then the other materials, and was tightened with r = 0.6 (where
the units of r are given in the units of the courser grid) — all other
materials presented in this paper use a tightening radius of r = 1.0.

Finally, we reconstruct continuous, differentiable fi from the tight-
ened volumes of each material using separable convolution, which
convolves a 1D continuous kernel with grid points along each sepa-
rate axis of a volume. For the results presented in this paper, we use
an interpolating 43 Catmull-Rom spline as the continuous kernel. The
reconstructed implicit functions are then input to the system as the set
of indicator functions F .

5.2 Distributing Particles on Junctions

We use the particle system framework of Meyer et al. [31] for placing
points along each material junction. This framework uses a sizing field
that informs particles of how far they should be from their neighbors
to meet LFS sampling requirements. We generate a sizing field vol-
ume for a multimaterial dataset by first computing the LFS of each IO
function. We then store at each grid point in the sizing field volume
the minimum LFS for the set evaluated at the grid point location.

Along sharp features, however, the LFS will go to zero, causing an
infinite sampling requirement. Because sharp features in the data are
explicitly sampled, the strict LFS requirements near 0-cells and 1-cells
can be violated, and thus, we place a lower bound on the sizing field.
This lower bound is determined by the tightening radius r (see the
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previous section) that drives the tightening algorithm when smoothing
the material volumes. This is (from analytical results in 2D, and em-
pirically in 3D) a good estimate of the size of the ball within which
the angle constraint (from Section 4.3) holds. For surfaces in 3D, the
preprocessing (tightening) does not guarantee a lower bound on the
principal curvatures in hyperbolic regions, which could lead to prob-
lems in obtaining sampling densities that ensure the angle-constraint
near 0- and 1-cells, which could result in triangulations that contain
faces that cross the material boundaries. In practice, this appears to be
very rare, and we have not observed this problem in the results shown
in this paper, despite the complexity of the datasets.

Using an ordered sampling scheme for distributing sets of particle
systems, we first sample each 0-cell with a single particle, which re-
mains fixed in place. Next, we sample 1-cells with particle systems
that interact with these 0-cell particles. Similarly, the 1-cell particles
are allowed to converge to a steady state and are then fixed in place.
Finally, we distribute particles on the various 2-cells that interact with
0- and 1-cell particles.

Fig. 5. Meshes of the white matter and cerebral spinal fluid (CSF) of a
brain dataset generated from an MRI scan.

5.3 Meshing the Surface

We use Tetgen1 to generate a tetrahedralization of the convex hull of
the set of particles. Each tetrahedral element is labeled according to
the material in which its circumscribing sphere center lies. The wa-
tertight, nonmanifold mesh of the material interfaces is the subset of
faces that are bounded by tetrahedra of different material types. Faces
that lie on the convex hull are labeled as having a second bounding
tetrahedra of the outside material type. This nonmanifold mesh can
then be used to generate volume filling elements that conform to the
LFS of the boundary (see Section 6). Manifold meshes of each in-
dividual material can also be extracted in a similar fashion, with the
shared boundaries of surface meshes having consistent triangulations
by construction.

We have experimented with other Delaunay-based surface recon-
struction algorithms, such as TightCocone [17], that are designed to
infer topology from an organized set of points without knowledge of
the underlying surface/solid. Our experiments showed these methods
can sometimes fail, and thus we advocate the use of a simpler labeling
algorithm, such as the one described in this paper, that includes infor-
mation about the underlying multimaterial volume which guarantees
conformal, watertight surfaces.

6 RESULTS

We present results from several real-world datasets generated from
MRI scans. The dimensions of each dataset are given in Table 1, along

1tetgen.berlios.de

with the number of materials and sample points. The torso and brain
datasets were sampled on a P4 3.2GHz CPU with 2GB of memory
in approximately 12 hours and 3 hours, respectively. The frog and
spheres datasets were sampled on a laptop with a Celeron 1.4GHz
CPU and 1GB of memory in approximately 5 hours and 4 minutes,
respectively. Running on four Dual-Core AMD Opteron 3.0GHz pro-
cessors, the preprocessing steps for each dataset (i.e., tightening each
material volume, computing the medial axes, and generating the sizing
field) required roughly the same amount of time as the respective parti-
cle sampling steps. We note that very little work was done to optimize
the preprocessing pipeline, and we believe that these steps could be
further streamlined, or, implemented with different algorithms (e.g.,
other methods for computing the medial axes).

Table 1. The dimensions and number of materials of each dataset, and
the number of particles used to sample the material junctions.

Dataset Source Volume # Particles
(# Materials) Dimensions

torso (5) MRI 260×121×169 394k
frog (5) MRI 260×245×150 186k
brain (3) MRI 149×188×148 161k

two spheres (3) synthetic 128×128×128 1214

A driving application for this work is the simulation of cardiac de-
fibrillation in children. The goal is to generate a pipeline that will ac-
quire a MRI scan of a child, generate patient-specific geometry from
the scanned data, and to then determine an ideal placement for a car-
diac defibrillator through FEM simulation. The torso dataset shown in
Figure 1 was generated from a segmented MRI volume in this study,
and consists of five materials: the torso tissue, bone, lung, heart, and
air. Although other materials exist in the original MRI scan, decisions
on which to include in the final simulation must be made to keep the
number of elements manageable. For example, including the thin lay-
ers of fluid that exist between different organs would induce excessive
numbers of elements as the feature size of this material layer is very
small. Both the brain and frog datasets shown in Figures 5 and 6 were
also generated from MRI scans that had been segmented into multil-
abel volumes. The synthetic two-sphere example in Figure 7 was gen-
erated over a grid from the difference of two analytically represented
spheres.

For many FEM simulations used in biomedical computing, the con-
dition number, i.e., the value that describes how numerically well-
behaved a simulation will be, is directly related to the most poorly-
shaped element in a tessellation. A metric that is commonly used to
quantify the quality of surface meshes for FEM is the ratio of the in-
scribed circle to the circumscribing circle of a triangle, 2rin/rcirc [43].
A ratio of one indicates an equilateral triangle, and a ratio of zero
indicates a triangle that has collapsed down to an edge. In Table 2
we present statics for the tessellations generated with the proposed
method, including the ratio of the most poorly shaped triangle for each
mesh. These statistics indicate that not only are the bulk of the trian-
gles nearly regular, but also that the worst shaped triangle is of consis-
tently high-quality. This latter result is important for eliminating the
time-consuming, and common, chore of hand tweaking mesh elements
to make them suitable for simulations.

We compare our results against a grid-based multimaterial mesh-
ing scheme using the VTK software2. Common to these approaches
is a pipeline that first extracts a nonmanifold mesh from a discrete,
multilabel volume, followed by a smoothing step to eliminate vox-
elization artifacts, and finally a decimation of the mesh to decrease
the number of triangles [6, 18]. Our implementation uses the vtkDis-
creteMarchingCubes class to extract a mesh of the interfaces, the vtk-
WindowedSincPolyDataFilter to smooth the voxelization artifacts, and
the vtkQuadricDecimation to reduce the number of triangles. We gen-
erated meshes using this pipeline of the two-sphere and frog examples

2vtk.org
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Fig. 6. Meshes of the frog dataset generated from an MRI scan, which was segmented into five different materials.

Table 2. Statistics about each mesh and their quality.

Material Number of Min / Avg
Triangles Radius Ratio

torso tissue 673k 0.39 / 0.94
torso bone 460k 0.31 / 0.94
torso lung 215k 0.32 / 0.93
torso heart 140k 0.38 / 0.93
frog tissue 367k 0.30 / 0.94
frog bone 197k 0.37 / 0.94
frog guts 46k 0.30 / 0.94
frog brain 8k 0.52 / 0.94
brain white matter 255k 0.39 / 0.94
brain csf 92k 0.42 / 0.94
spheres top 1544 0.51 / 0.92
spheres bottom 1506 0.52 / 0.92

with approximately the same number of triangles as the analogous par-
ticle system-based examples. The minimum and average radius ratios
for the spheres are 0.014 and 0.79, respectively, and for the frog 0.0
and 0.79, respectively. Not only is the quality of these meshes signif-
icantly lower than for the particle system-based meshes, but the sizes
of the triangles do not adapt to the underlying geometry. Adaptive tri-
angulations are important for efficiently capturing the geometry of an
object with as few elements as possible. We present a visual compari-
son of these results in Figure 8.

The proposed method is also well-suited for generating volumetric
samples of multimaterial datasets. We have extended the particle sys-
tem framework for packing spheres inside of sampled multimaterial
interfaces. The spheres are distributed using the same sizing field that
guides the surface samples, which is smoothed away from the surface
such that larger values are on the inside of materials. The spheres are
distributed as an additional step at the end of the ordered distribution
process. These volume samples can be used to generate tetrahedral
meshes that conform to the material interfaces and respect the LFS of
the boundaries (see Figure 9).

We have experimented with TetGen for creating tetrahedral meshes
with, and without, the packed spheres, to test a range of options for
generating volumetric meshes. In the latter case, we allow TetGen
to place additional points inside of the surface meshes to meet qual-
ity metrics based on the radius-edge ratio. In both cases, however,
poorly-shaped elements known as slivers are present in the mesh —
these slivers are characterized as a flat tetrahedron with vertices that
are nearly coplanar, and are a common challenge for tetrahedraliza-
tion algorithms as well-spaced points do not guarantee well-shaped

tetrahedra [19]. Several algorithms with shape guarantees have been
developed for eliminating slivers [15, 13], although it has been noted
that, in practice, inserting points at the circumsphere centers of slivers
works well [42]. In Table 3 we report the minimum and average radius
ratios for the tetrahedral meshes in Figure 9 (where again, a value of
one indicates a regular tetrahedron), along with the percentage of ele-
ments that are characterized as slivers (i.e., with a radius ratio less than
0.1). We observed that the slivers in the tetrahedral meshes generated
from packed spheres exist almost exclusively near the surface mesh,
which is a similar phenomena encountered in other tetrahedral mesh
generation algorithms [3].

Fig. 7. A synthetic example of two intersecting spheres, illustrating the
consistency of the meshes along the shared boundary.

To provide a proof-of-concept for taking real-world data contain-
ing multiple materials through a complete simulation pipeline, we
have implemented a point-based physics algorithm using the packed
spheres and surface meshes. In these simulations, research has shown
that both physical and geometric complexity are highly correlated [1],
and that the stability and accuracy of the simulation is directly related
to the ability of the surface and volume samples to capture the LFS
of the material boundaries. The algorithm simulates elastic materi-
als [32], and is extended to handle multimaterial objects by assigning
different physical properties to volume samples of different material
types. We utilize surface meshes generated from the particles sampling
the multimaterial interfaces to include collision detection between ma-
terials of different types [25], as well as for rendering the simulation
results. In the supplemental video we present simulation results of
the frog dataset dropping onto a flat surface. The video contrasts the
results from assigning all volume samples the same material param-
eters with that from assigning different parameters to each material.
By assigning different properties to each material in the frog, more
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Fig. 8. Comparisons of multimaterial meshes generated using a grid-
based approach (top) and our particle system-based approach (bottom).
The left column is the two-sphere example, and the right column is a
closeup from the frog example.

complex and realistic simulations can be achieved, including stiffness
within the head and body due to the rigid bone structure. This example
illustrates not only the importance of modeling multiple materials of
objects for increasingly realistic simulations, but also the potential for
automatically generating complex digital models from scanned, real-
world objects.

Table 3. Quality of tetrahedral meshes generated for the datasets in Fig-
ure 9. The different generation methods are: (SP) sphere packing; (SP-
1R) sphere packing with one iteration of refinement; (SP-2R) sphere
packing with two iterations of refinement; (TG) volumetric points added
by TetGen. An element is considered a sliver when its radius ratio is
less than 0.1.

Material Generation Number of Min / Avg Sliver
Method Tetrahedra Radius Ratio %

two spheres SP 12.7k 0.02 / 0.78 0.24(%)
two spheres SP-1R 12.8k 0.05 / 0.78 0.02
two spheres SP-2R 12.8k 0.10 / 0.78 0.00
two spheres TG 30.2k 0.06 / 0.59 0.1

frog SP 443k 0.0001 / 0.77 0.30
frog SP-1R 452k 0.0001 / 0.77 0.06
frog SP-2R 453k 0.0001 / 0.77 0.06
frog TG 1.146M 0.0259 / 0.60 0.08

7 CONCLUSIONS AND FUTURE WORK

The high-quality results of our method come at the cost of long compu-
tation times. Most of that time is spent in preprocessing the multilabel
data and distributing the sets of particles. The number of materials in
the dataset also adds to the overall computation time as the max func-
tion must evaluate every fi that exists in the set. However, the quality
of the meshes from our particle-based scheme is so high that we can

Fig. 9. Tetrahedralizations of the interface and volume particle samples,
shown with a cutting plane.

avoid the usually time-consuming step of meticulous hand-editing of
mesh vertices to ensure well-shaped elements. We are currently work-
ing towards an optimized implementation of this pipeline for public re-
lease, and we are interested in adapting more complex tetrahedraliza-
tion algorithms to the multimaterial surfaces to produce higher quality
volume meshes.

8 APPENDIX

Differentiable Approximation to max We present an analytic,
differentiable approximation to max for a set of m functions vi ∈ V
that interpolates the max(i, j) at i = j by first defining a function g:

g(v) = 1+
v

(v2 + ε2
max)

1/2
. (10)

The max function is then:

max(V ) =
1

2m−1

m

∑
i=1

vi

m

∏
j=1, j �=i

g(vi− v j) (11)

with the gradient given by:

∇max(V ) =
1

2m−1

m

∑
i=1

[
∇vi

m

∏
j=1, j �=i

g(vi− v j)+

vi

(
m

∑
j=1, j �=i

∇g(vi− v j)
m

∏
j=1, j �=i

g(vi− v j)

)]
(12)

where:

∇g(v) = ∇v

[
1

(v2 + ε2
max)

1/2
−

v2

(v2 + ε2
max)

3/2

]
. (13)

For the results in this paper we use εmax = 10−5.
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