Center for Integrative Biomedical Computing

SCI Publications


L. Zhukov, D. Weinstein, C.R. Johnson. “Independent Component Analysis for EEG Source Localization in Realistic Head Models,” In IEEE Engineering in Medicine and Biology, Vol. 19, No. 3, pp. 87--96. 2000.


D.H. Brooks, G.F. Ahmad, R.S. MacLeod, G.M. Maratos. “Inverse Electrocardiography by Simultaneous Imposition of Multiple Constraints,” In IEEE Trans Biomed. Eng., Vol. 46, No. 1, pp. 3--18. 1999.

C.R. Johnson, S.G. Parker, C.D. Hansen, G.L. Kindlmann, Y. Livnat. “Interactive Simulation and Visualization,” In IEEE Computer, Vol. 32, No. 12, pp. 59--65. Dec, 1999.

M. Miller, C.D. Hansen, C.R. Johnson. “The SCIRun Problem Solving Environment: Implementation within a Distributed Environment,” In Ninth SIAM Conference on Parallel Processing for Scientific Computing, Note: extended abstract, 1999.

D.M. Weinstein, L. Zhukov, C.R. Johnson. “Lead Field Basis for FEM Source Localization,” School of Computing Technical Report, No. UUCS-99-014, University of Utah, Salt Lake City, UT October, 1999.

L. Zhukov, D.M. Weinstein, C.R. Johnson. “Independent Component Analysis For EEG Source Localization In Realistic Head Models,” In Third International Conference on Inverse Problems in Engineering, 1999.


C.R. Johnson, R.S. MacLeod, P.R. Ershler. “A Computer Model for the Study of Electrical Current Flow in the Human Thorax,” In Computers in Biology and Medicine, Vol. 22, No. 5, Elsevier BV, pp. 305--323. 1992.


Electrocardiography has played an important role in the detection and characterization of heart function, both in normal and abnormal states. In this paper we present an inhomogeneous, anisotropic computer model of the human thorax for use in electrocardiography with emphasis on the calculation of transthoracic potential and current distributions. Knowledge of the current pathways in the thorax has many applications in electrocardiography and has direct utility in studies pertaining to cardiac defibrillation, forward and inverse problems, impedance tomography, and electrode placement in electrocardiography.

Keywords: scalar field methods, vector field methods, tensor field methods, cardiac heart, scientific visualization