Designed especially for neurobiologists, FluoRender is an interactive tool for multi-channel fluorescence microscopy data visualization and analysis.
Deep brain stimulation
BrainStimulator is a set of networks that are used in SCIRun to perform simulations of brain stimulation such as transcranial direct current stimulation (tDCS) and magnetic transcranial stimulation (TMS).
Developing software tools for science has always been a central vision of the SCI Institute.

Image Analysis

SCI's imaging work addresses fundamental questions in 2D and 3D image processing, including filtering, segmentation, surface reconstruction, and shape analysis. In low-level image processing, this effort has produce new nonparametric methods for modeling image statistics, which have resulted in better algorithms for denoising and reconstruction. Work with particle systems has led to new methods for visualizing and analyzing 3D surfaces. Our work in image processing also includes applications of advanced computing to 3D images, which has resulted in new parallel algorithms and real-time implementations on graphics processing units (GPUs). Application areas include medical image analysis, biological image processing, defense, environmental monitoring, and oil and gas.


ross

Ross Whitaker

Segmentation
sarang

Sarang Joshi

Shape Statistics
Segmentation
Brain Atlasing
tolga

Tolga Tasdizen

Image Processing
Machine Learning
chris

Chris Johnson

Diffusion Tensor Analysis
shireen

Shireen Elhabian

Image Analysis
Computer Vision


Funded Research Projects:



Publications in Image Analysis:


Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus
M. Grant, M. R. Kunz, K. Iyer, L. I. Held, T. Tasdizen, J. A. Aguiar, P. P. Dholabhai. In Journal of Materials Research, Springer International Publishing, pp. 1--16. 2022.

Multi-principal element, high entropy alloys (HEAs) are an emerging class of materials that have found applications across the board. Owing to the multitude of possible candidate alloys, exploration and compositional design of HEAs for targeted applications is challenging since it necessitates a rational approach to identify compositions exhibiting enriched performance. Here, we report an innovative framework that integrates molecular dynamics and machine learning to explore a large chemical-configurational space for evaluating elastic modulus of equiatomic and non-equiatomic HEAs along primary crystallographic directions. Vital thermodynamic properties and machine learning features have been incorporated to establish fundamental relationships correlating Young’s modulus with Gibbs free energy, valence electron concentration, and atomic size difference. In HEAs, as the number of elements increases …



Characterization of uncertainties and model generalizability for convolutional neural network predictions of uranium ore concentrate morphology
C. A. Nizinski, C. Ly, C. Vachet, A. Hagen, T. Tasdizen, L. W. McDonald. In Chemometrics and Intelligent Laboratory Systems, Vol. 225, Elsevier, pp. 104556. 2022.
ISSN: 0169-7439
DOI: https://doi.org/10.1016/j.chemolab.2022.104556

As the capabilities of convolutional neural networks (CNNs) for image classification tasks have advanced, interest in applying deep learning techniques for determining the natural and anthropogenic origins of uranium ore concentrates (UOCs) and other unknown nuclear materials by their surface morphology characteristics has grown. But before CNNs can join the nuclear forensics toolbox along more traditional analytical techniques – such as scanning electron microscopy (SEM), X-ray diffractometry, mass spectrometry, radiation counting, and any number of spectroscopic methods – a deeper understanding of “black box” image classification will be required. This paper explores uncertainty quantification for convolutional neural networks and their ability to generalize to out-of-distribution (OOD) image data sets. For prediction uncertainty, Monte Carlo (MC) dropout and random image crops as variational inference techniques are implemented and characterized. Convolutional neural networks and classifiers using image features from unsupervised vector-quantized variational autoencoders (VQ-VAE) are trained using SEM images of pure, unaged, unmixed uranium ore concentrates considered “unperturbed.” OOD data sets are developed containing perturbations from the training data with respect to the chemical and physical properties of the UOCs or data collection parameters; predictions made on the perturbation sets identify where significant shortcomings exist in the current training data and techniques used to develop models for classifying uranium process history, and provides valuable insights into how datasets and classification models can be improved for better generalizability to out-of-distribution examples.



3D Photography to Quantify the Severity of Metopic Craniosynostosis
M. K. Bruce, W. Tao, J. Beiriger, C. Christensen, M. J. Pfaff, R. Whitaker, J. A. Goldstein. In The Cleft Palate-Craniofacial Journal, SAGE Publications, 2022.

Objective

This study aims to determine the utility of 3D photography for evaluating the severity of metopic craniosynostosis (MCS) using a validated, supervised machine learning (ML) algorithm.

Design/Setting/Patients

This single-center retrospective cohort study included patients who were evaluated at our tertiary care center for MCS from 2016 to 2020 and underwent both head CT and 3D photography within a 2-month period.
Main Outcome Measures

The analysis method builds on our previously established ML algorithm for evaluating MCS severity using skull shape from CT scans. In this study, we regress the model to analyze 3D photographs and correlate the severity scores from both imaging modalities.
Results

14 patients met inclusion criteria, 64.3% male (n = 9). The mean age in years at 3D photography and CT imaging was 0.97 and 0.94, respectively. Ten patient images were obtained preoperatively, and 4 patients did not require surgery. The severity prediction of the ML algorithm correlates closely when comparing the 3D photographs to CT bone data (Spearman correlation coefficient [SCC] r = 0.75; Pearson correlation coefficient [PCC] r = 0.82).

Conclusion

The results of this study show that 3D photography is a valid alternative to CT for evaluation of head shape in MCS. Its use will provide an objective, quantifiable means of assessing outcomes in a rigorous manner while decreasing radiation exposure in this patient population.



Deep Learning the Shape of the Brain Connectome
Subtitled “arXiv preprint arXiv:2203.06122, 2022,” H. Dai, M. Bauer, P.T. Fletcher, S.C. Joshi. 2022.

To statistically study the variability and differences between normal and abnormal brain connectomes, a mathematical model of the neural connections is required. In this paper, we represent the brain connectome as a Riemannian manifold, which allows us to model neural connections as geodesics. We show for the first time how one can leverage deep neural networks to estimate a Riemannian metric of the brain that can accommodate fiber crossings and is a natural modeling tool to infer the shape of the brain from DWMRI. Our method achieves excellent performance in geodesic-white-matter-pathway alignment and tackles the long-standing issue in previous methods: the inability to recover the crossing fibers with high fidelity.



Google Street View Images as Predictors of Patient Health Outcomes, 2017–2019
Q. C. Nguyen, T. Belnap, P. Dwivedi, A. Hossein Nazem Deligani, A. Kumar, D. Li, R. Whitaker, J. Keralis, H. Mane, X. Yue, T. T. Nguyen, T. Tasdizen, K. D. Brunisholz. In Big Data and Cognitive Computing, Vol. 6, No. 1, Multidisciplinary Digital Publishing Institute, 2022.

Collecting neighborhood data can both be time- and resource-intensive, especially across broad geographies. In this study, we leveraged 1.4 million publicly available Google Street View (GSV) images from Utah to construct indicators of the neighborhood built environment and evaluate their associations with 2017–2019 health outcomes of approximately one-third of the population living in Utah. The use of electronic medical records allows for the assessment of associations between neighborhood characteristics and individual-level health outcomes while controlling for predisposing factors, which distinguishes this study from previous GSV studies that were ecological in nature. Among 938,085 adult patients, we found that individuals living in communities in the highest tertiles of green streets and non-single-family homes have 10–27% lower diabetes, uncontrolled diabetes, hypertension, and obesity, but higher substance use disorders—controlling for age, White race, Hispanic ethnicity, religion, marital status, health insurance, and area deprivation index. Conversely, the presence of visible utility wires overhead was associated with 5–10% more diabetes, uncontrolled diabetes, hypertension, obesity, and substance use disorders. Our study found that non-single-family and green streets were related to a lower prevalence of chronic conditions, while visible utility wires and single-lane roads were connected with a higher burden of chronic conditions. These contextual characteristics can better help healthcare organizations understand the drivers of their patients’ health by further considering patients’ residential environments, which present both …



Adversarially Robust Classification by Conditional Generative Model Inversion
Subtitled “arXiv preprint arXiv:2201.04733,” M. Alirezaei, T. Tasdizen. 2022.

Most adversarial attack defense methods rely on obfuscating gradients. These methods are successful in defending against gradient-based attacks; however, they are easily circumvented by attacks which either do not use the gradient or by attacks which approximate and use the corrected gradient. Defenses that do not obfuscate gradients such as adversarial training exist, but these approaches generally make assumptions about the attack such as its magnitude. We propose a classification model that does not obfuscate gradients and is robust by construction without assuming prior knowledge about the attack. Our method casts classification as an optimization problem where we "invert" a conditional generator trained on unperturbed, natural images to find the class that generates the closest sample to the query image. We hypothesize that a potential source of brittleness against adversarial attacks is the high-to-low-dimensional nature of feed-forward classifiers which allows an adversary to find small perturbations in the input space that lead to large changes in the output space. On the other hand, a generative model is typically a low-to-high-dimensional mapping. While the method is related to Defense-GAN, the use of a conditional generative model and inversion in our model instead of the feed-forward classifier is a critical difference. Unlike Defense-GAN, which was shown to generate obfuscated gradients that are easily circumvented, we show that our method does not obfuscate gradients. We demonstrate that our model is extremely robust against black-box attacks and has improved robustness against white-box attacks compared to naturally trained, feed-forward classifiers.



Translational computer science at the scientific computing and imaging institute
C. R. Johnson. In Journal of Computational Science, Vol. 52, pp. 101217. 2021.
ISSN: 1877-7503
DOI: https://doi.org/10.1016/j.jocs.2020.101217

The Scientific Computing and Imaging (SCI) Institute at the University of Utah evolved from the SCI research group, started in 1994 by Professors Chris Johnson and Rob MacLeod. Over time, research centers funded by the National Institutes of Health, Department of Energy, and State of Utah significantly spurred growth, and SCI became a permanent interdisciplinary research institute in 2000. The SCI Institute is now home to more than 150 faculty, students, and staff. The history of the SCI Institute is underpinned by a culture of multidisciplinary, collaborative research, which led to its emergence as an internationally recognized leader in the development and use of visualization, scientific computing, and image analysis research to solve important problems in a broad range of domains in biomedicine, science, and engineering. A particular hallmark of SCI Institute research is the creation of open source software systems, including the SCIRun scientific problem-solving environment, Seg3D, ImageVis3D, Uintah, ViSUS, Nektar++, VisTrails, FluoRender, and FEBio. At this point, the SCI Institute has made more than 50 software packages broadly available to the scientific community under open-source licensing and supports them through web pages, documentation, and user groups. While the vast majority of academic research software is written and maintained by graduate students, the SCI Institute employs several professional software developers to help create, maintain, and document robust, tested, well-engineered open source software. The story of how and why we worked, and often struggled, to make professional software engineers an integral part of an academic research institute is crucial to the larger story of the SCI Institute’s success in translational computer science (TCS).



Comparing radiologists’ gaze and saliency maps generated by interpretability methods for chest x-rays
Subtitled “arXiv:2112.11716v1,” R.B. Lanfredi, A. Arora, T. Drew, J.D. Schroeder, T. Tasdizen. 2021.

The interpretability of medical image analysis models is considered a key research field. We use a dataset of eye-tracking data from five radiologists to compare the outputs of interpretability methods against the heatmaps representing where radiologists looked. We conduct a class-independent analysis of the saliency maps generated by two methods selected from the literature: Grad-CAM and attention maps from an attention-gated model. For the comparison, we use shuffled metrics, which avoid biases from fixation locations. We achieve scores comparable to an interobserver baseline in one shuffled metric, highlighting the potential of saliency maps from Grad-CAM to mimic a radiologist’s attention over an image. We also divide the dataset into subsets to evaluate in which cases similarities are higher.



Bridge Simulation on Lie Groups and Homogeneous Spaces with Application to Parameter Estimation
Subtitled “arXiv:2112.00866,” M. Højgaard Jensen, L. Hilgendorf, S. Joshi, S. Sommer. 2021.



Prediction of Femoral Head Coverage from Articulated Statistical Shape Models of Patients with Developmental Dysplasia of the Hip
P. R. Atkins, P. Agrawal, J. D. Mozingo, K. Uemura, K. Tokunaga, C. L. Peters, S. Y. Elhabian, R. T. Whitaker, A. E. Anderson. In Journal of Orthopaedic Research, Wiley, 2021.
DOI: 10.1002/jor.25227

Developmental dysplasia of the hip (DDH) is commonly described as reduced femoral head coverage due to anterolateral acetabular deficiency. Although reduced coverage is the defining trait of DDH, more subtle and localized anatomic features of the joint are also thought to contribute to symptom development and degeneration. These features are challenging to identify using conventional approaches. Herein, we assessed the morphology of the full femur and hemi-pelvis using an articulated statistical shape model (SSM). The model determined the morphological and pose-based variations associated with DDH in a population of Japanese females and established which of these variations predict coverage. Computed tomography images of 83 hips from 47 patients were segmented for input into a correspondence-based SSM. The dominant modes of variation in the model initially represented scale and pose. After removal of these factors through individual bone alignment, femoral version and neck-shaft angle, pelvic curvature, and acetabular version dominated the observed variation. Femoral head oblateness and prominence of the acetabular rim and various muscle attachment sites of the femur and hemi-pelvis were found to predict 3D CT-based coverage measurements (R2=0.5-0.7 for the full bones, R2=0.9 for the joint).



Validation of Artificial Intelligence Severity Assessment in Metopic Craniosynostosis
A. Junn, J. Dinis, S. C. Hauc, M. K. Bruce, K. E. Park, W. Tao, C. Christensen, R. Whitaker, J. A. Goldstein, M. Alperovich. In The Cleft Palate-Craniofacial Journal, SAGE Publications, 2021.
DOI: https://doi.org/10.1177/10.1177/10556656211061021

Objective
Several severity metrics have been developed for metopic craniosynostosis, including a recent machine learning-derived algorithm. This study assessed the diagnostic concordance between machine learning and previously published severity indices.

Design
Preoperative computed tomography (CT) scans of patients who underwent surgical correction of metopic craniosynostosis were quantitatively analyzed for severity. Each scan was manually measured to derive manual severity scores and also received a scaled metopic severity score (MSS) assigned by the machine learning algorithm. Regression analysis was used to correlate manually captured measurements to MSS. ROC analysis was performed for each severity metric and were compared to how accurately they distinguished cases of metopic synostosis from controls.
Results
In total, 194 CT scans were analyzed, 167 with metopic synostosis and 27 controls. The mean scaled MSS for the patients with metopic was 6.18 ± 2.53 compared to 0.60 ± 1.25 for controls. Multivariable regression analyses yielded an R-square of 0.66, with significant manual measurements of endocranial bifrontal angle (EBA) (P = 0.023), posterior angle of the anterior cranial fossa (p < 0.001), temporal depression angle (P = 0.042), age (P < 0.001), biparietal distance (P < 0.001), interdacryon distance (P = 0.033), and orbital width (P < 0.001). ROC analysis demonstrated a high diagnostic value of the MSS (AUC = 0.96, P < 0.001), which was comparable to other validated indices including the adjusted EBA (AUC = 0.98), EBA (AUC = 0.97), and biparietal/bitemporal ratio (AUC = 0.95).
Conclusions
The machine learning algorithm offers an objective assessment of morphologic severity that provides a reliable composite impression of severity. The generated score is comparable to other severity indices in ability to distinguish cases of metopic synostosis from controls.



Determining the Composition of a Mixed Material with Synthetic Data
C. Ly, C. A. Nizinski, A. Toydemir, C. Vachet, L. W. McDonald, T. Tasdizen. In Microscopy and Microanalysis, Cambridge University Press, pp. 1--11. 2021.
DOI: 10.1017/S1431927621012915

Determining the composition of a mixed material is an open problem that has attracted the interest of researchers in many fields. In our recent work, we proposed a novel approach to determine the composition of a mixed material using convolutional neural networks (CNNs). In machine learning, a model “learns” a specific task for which it is designed through data. Hence, obtaining a dataset of mixed materials is required to develop CNNs for the task of estimating the composition. However, the proposed method instead creates the synthetic data of mixed materials generated from using only images of pure materials present in those mixtures. Thus, it eliminates the prohibitive cost and tedious process of collecting images of mixed materials. The motivation for this study is to provide mathematical details of the proposed approach in addition to extensive experiments and analyses. We examine the approach on two datasets to demonstrate the ease of extending the proposed approach to any mixtures. We perform experiments to demonstrate that the proposed approach can accurately determine the presence of the materials, and sufficiently estimate the precise composition of a mixed material. Moreover, we provide analyses to strengthen the validation and benefits of the proposed approach.



Computational Image Techniques for Analyzing Lanthanide and Actinide Morphology,
C. A. Nizinski, C. Ly, L. W. McDonald IV, T. Tasdizen. In Rare Earth Elements and Actinides: Progress in Computational Science Applications, Ch. 6, pp. 133-155. 2021.
DOI: 10.1021/bk-2021-1388.ch006

This chapter introduces computational image analysis techniques and how they may be used for material characterization as it pertains to lanthanide and actinide chemistry. Specifically, the underlying theory behind particle segmentation, texture analysis, and convolutional neural networks for material characterization are briefly summarized. The variety of particle segmentation techniques that have been used to effectively measure the size and shape of morphological features from scanning electron microscope images will be discussed. In addition, the extraction of image texture features via gray-level co-occurrence matrices and angle measurement techniques are described and demonstrated. To conclude, the application of convolutional neural networks to lanthanide and actinide materials science challenges are described with applications for image classification, feature extraction, and predicting a materials morphology discussed.



DeepSSM: A Blueprint for Image-to-Shape Deep Learning Models
Subtitled “arXiv preprint arXiv:2110.07152,” R. Bhalodia, S. Elhabian, J. Adams, W. Tao, L. Kavan, R. Whitaker. 2021.

Statistical shape modeling (SSM) characterizes anatomical variations in a population of shapes generated from medical images. SSM requires consistent shape representation across samples in shape cohort. Establishing this representation entails a processing pipeline that includes anatomy segmentation, re-sampling, registration, and non-linear optimization. These shape representations are then used to extract low-dimensional shape descriptors that facilitate subsequent analyses in different applications. However, the current process of obtaining these shape descriptors from imaging data relies on human and computational resources, requiring domain expertise for segmenting anatomies of interest. Moreover, this same taxing pipeline needs to be repeated to infer shape descriptors for new image data using a pre-trained/existing shape model. Here, we propose DeepSSM, a deep learning-based framework for learning the functional mapping from images to low-dimensional shape descriptors and their associated shape representations, thereby inferring statistical representation of anatomy directly from 3D images. Once trained using an existing shape model, DeepSSM circumvents the heavy and manual pre-processing and segmentation and significantly improves the computational time, making it a viable solution for fully end-to-end SSM applications. In addition, we introduce a model-based data-augmentation strategy to address data scarcity. Finally, this paper presents and analyzes two different architectural variants of DeepSSM with different loss functions using three medical datasets and their downstream clinical application. Experiments showcase that DeepSSM performs comparably or better to the state-of-the-art SSM both quantitatively and on application-driven downstream tasks. Therefore, DeepSSM aims to provide a comprehensive blueprint for deep learning-based image-to-shape models.



REFLACX, a dataset of reports and eye-tracking data for localization of abnormalities in chest x-rays
Subtitled “arXiv:2109.14187,” R. B. Lanfredi, M. Zhang, W. F. Auffermann, J. Chan, P. T. Duong, V. Srikumar, T. Drew, J. D. Schroeder, T. Tasdizen. 2021.

Deep learning has shown recent success in classifying anomalies in chest x-rays, but datasets are still small compared to natural image datasets. Supervision of abnormality localization has been shown to improve trained models, partially compensating for dataset sizes. However, explicitly labeling these anomalies requires an expert and is very time-consuming. We propose a method for collecting implicit localization data using an eye tracker to capture gaze locations and a microphone to capture a dictation of a report, imitating the setup of a reading room, and potentially scalable for large datasets. The resulting REFLACX (Reports and Eye-Tracking Data for Localization of Abnormalities in Chest X-rays) dataset was labeled by five radiologists and contains 3,032 synchronized sets of eye-tracking data and timestamped report transcriptions. We also provide bounding boxes around lungs and heart and validation labels consisting of ellipses localizing abnormalities and image-level labels. Furthermore, a small subset of the data contains readings from all radiologists, allowing for the calculation of inter-rater scores.



A Gaussian Process Model for Unsupervised Analysis of High Dimensional Shape Data,
W. Tao, R. Bhalodia, R. Whitaker. In Machine Learning in Medical Imaging, Springer International Publishing, pp. 356--365. 2021.
DOI: 10.1007/978-3-030-87589-3_37

Applications of medical image analysis are often faced with the challenge of modelling high-dimensional data with relatively few samples. In many settings, normal or healthy samples are prevalent while pathological samples are rarer, highly diverse, and/or difficult to model. In such cases, a robust model of the normal population in the high-dimensional space can be useful for characterizing pathologies. In this context, there is utility in hybrid models, such as probabilistic PCA, which learns a low-dimensional model, commensurates with the available data, and combines it with a generic, isotropic noise model for the remaining dimensions. However, the isotropic noise model ignores the inherent correlations that are evident in so many high-dimensional data sets associated with images and shapes in medicine. This paper describes a method for estimating a Gaussian model for collections of images or shapes that exhibit underlying correlations, e.g., in the form of smoothness. The proposed method incorporates a Gaussian-process noise model within a generative formulation. For optimization, we derive a novel expectation maximization (EM) algorithm. We demonstrate the efficacy of the method on synthetic examples and on anatomical shape data.



A Nonparametric Approach for Estimating Three-Dimensional Fiber Orientation Distribution Functions (ODFs) in Fibrous Materials
A. Rauff, L.H. Timmins, R.T. Whitaker, J.A. Weiss. In IEEE Transactions on Medical Imaging, 2021.
DOI: 10.1109/TMI.2021.3115716

Many biological tissues contain an underlying fibrous microstructure that is optimized to suit a physiological function. The fiber architecture dictates physical characteristics such as stiffness, diffusivity, and electrical conduction. Abnormal deviations of fiber architecture are often associated with disease. Thus, it is useful to characterize fiber network organization from image data in order to better understand pathological mechanisms. We devised a method to quantify distributions of fiber orientations based on the Fourier transform and the Qball algorithm from diffusion MRI. The Fourier transform was used to decompose images into directional components, while the Qball algorithm efficiently converted the directional data from the frequency domain to the orientation domain. The representation in the orientation domain does not require any particular functional representation, and thus the method is nonparametric. The algorithm was verified to demonstrate its reliability and used on datasets from microscopy to show its applicability. This method increases the ability to extract information of microstructural fiber organization from experimental data that will enhance our understanding of structure-function relationships and enable accurate representation of material anisotropy in biological tissues.



Integrated Construction of Multimodal Atlases with Structural Connectomes in the Space of Riemannian Metrics
Subtitled “arXiv preprint arXiv:2109.09808,” K.M. Campbell, H. Dai, Z. Su, M. Bauer, P.T. Fletcher, S.C. Joshi. 2021.

The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fr\'echet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.



Learning to Estimate the Composition of a Mixture with Synthetic Data
C. Ly, C. Nizinski, C. Vachet, L. McDonald, T. Tasdizen. In Microscopy and Microanalysis, 2021.

Identifying the precise composition of a mixed material is important in various applications. For instance, in nuclear forensics analysis, knowing the process history of unknown or illicitly trafficked nuclear materials when they are discovered is desirable to prevent future losses or theft of material from the processing facilities. Motivated by this open problem, we describe a novel machine learning approach to determine the composition of a mixture from SEM images. In machine learning, the training data distribution should reflect the distribution of the data the model is expected to make predictions for, which can pose a hurdle. However, a key advantage of our proposed framework is that it requires reference images of pure material samples only. Removing the need for reference samples of various mixed material compositions reduces the time and monetary cost associated with reference sample preparation and imaging. Moreover, our proposed framework can determine the composition of a mixture composed of chemically similar materials, whereas other elemental analysis tools such as powder X-ray diffraction (p-XRD) have trouble doing so. For example, p-XRD is unable to discern mixtures composed of triuranium octoxide (U3O8) synthesized from different synthetic routes such as uranyl peroxide (UO4) and ammonium diuranate (ADU) [1]. In contrast, our proposed framework can easily determine the composition of uranium oxides mixture synthesized from different synthetic routes, as we illustrate in the experiments.



Leveraging Unsupervised Image Registration for Discovery of Landmark Shape Descriptor
R. Bhalodia, S. Elhabian, L. Kavan, R. Whitaker. In Medical Image Analysis, Elsevier, pp. 102157. 2021.

In current biological and medical research, statistical shape modeling (SSM) provides an essential framework for the characterization of anatomy/morphology. Such analysis is often driven by the identification of a relatively small number of geometrically consistent features found across the samples of a population. These features can subsequently provide information about the population shape variation. Dense correspondence models can provide ease of computation and yield an interpretable low-dimensional shape descriptor when followed by dimensionality reduction. However, automatic methods for obtaining such correspondences usually require image segmentation followed by significant preprocessing, which is taxing in terms of both computation as well as human resources. In many cases, the segmentation and subsequent processing require manual guidance and anatomy specific domain expertise. This paper proposes a self-supervised deep learning approach for discovering landmarks from images that can directly be used as a shape descriptor for subsequent analysis. We use landmark-driven image registration as the primary task to force the neural network to discover landmarks that register the images well. We also propose a regularization term that allows for robust optimization of the neural network and ensures that the landmarks uniformly span the image domain. The proposed method circumvents segmentation and preprocessing and directly produces a usable shape descriptor using just 2D or 3D images. In addition, we also propose two variants on the training loss function that allows for prior shape information to be integrated into the model. We apply this framework on several 2D and 3D datasets to obtain their shape descriptors. We analyze these shape descriptors in their efficacy of capturing shape information by performing different shape-driven applications depending on the data ranging from shape clustering to severity prediction to outcome diagnosis.